Learn More
Rationale: Prepulse inhibition (PPI) of the startle reflex occurs when brief, non-startling tactile, acoustic or visual stimuli are presented 20–500 ms before the startling stimulus. Objective: To review information about PPI-mediating brain stem circuits and transmitters, and their functions. Results: Midbrain systems are most critical for the fast relay(More)
After a few pairings of a threatening stimulus with a formerly neutral cue, animals and humans will experience a state of conditioned fear when only the cue is present. Conditioned fear provides a critical survival-related function in the face of threat by activating a range of protective behaviors. The present review summarizes and compares the results of(More)
Presentation of trimethylthiazoline (TMT, a component of fox feces) to laboratory rats elicits freezing, a prominent behavioral sign of anxiety or fear. The present study investigated the neural basis of this unlearned response. Muscimol, a GABA(A) receptor agonist, was injected (4.4 nmol/0.5 microl) into the bed nucleus of the stria terminalis (BNST) as(More)
  • M Fendt
  • 2001
NMDA receptors within the amygdala play an important role in the acquisition and expression of conditioned fear. Because amygdaloid injections of NMDA receptor antagonists did not block the expression of every behavioral sign of fear, a discussion arose as to whether amygdaloid NMDA receptors play different roles in different kinds of fear-conditioning(More)
Predator-prey relationships provide a classic paradigm for the study of innate animal behavior. Odors from carnivores elicit stereotyped fear and avoidance responses in rodents, although sensory mechanisms involved are largely unknown. Here, we identified a chemical produced by predators that activates a mouse olfactory receptor and produces an innate(More)
Glutamate receptors play an essential role in fear-related learning and memory. The present study was designed to assess the role of the group I metabotropic glutamate receptor (mGluR) subtype 5 in the acquisition and retrieval of conditioned fear in rats. The selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) was applied systemically(More)
The bed nucleus of the stria terminalis (BNST) is involved in the mediation of fear behavior in rats. A previous study of our laboratory demonstrated that temporary inactivation of the BNST blocks fear behavior induced by exposure to trimethylthiazoline (TMT), a component of fox odor. The present study investigates whether noradrenaline release within the(More)
One of the main interests in the field of neuroscience is the investigation of the neural basis of fear. During recent years, an increasing number of studies have used trimethylthiazoline (TMT), a component of red fox feces, as a stimulus to induce fear in predator naive rats, mice, and voles. The aim of the present review is to summarize these studies. We(More)
Sensorimotor gating can be measured as prepulse inhibition of the startle response in humans and rats. Since prepulse inhibition is impaired in schizophrenics there is considerable interest in understanding the neuronal basis of prepulse inhibition. Neuropathological findings indicate a dysfunction of the glutamatergic and GABAergic system in cortico-limbic(More)
The amygdala plays an important role in emotional learning. Synaptic plasticity underlying the acquisition of conditioned fear occurs in the lateral nucleus of the amygdala: long-term potentiation (LTP) of synapses in the pathway of the conditioned stimulus (CS) has shown to be a neural correlate of this kind of emotional learning. The present study is(More)