Learn More
We review some usual laser range finding techniques for industrial applications. After outlining the basic principles of triangulation and time of flight [pulsed, phase-shift and frequency modulated continuous wave (FMCW)], we discuss their respective fundamental limitations. Selected examples of traditional and new applications are also briefly presented.
1.55-microm vertical cavity surface-emitting low-parasitic lasers show open eyes up to 22-Gb/s modulation speed. Uncooled error-free operation over a wide temperature range up to 85 degrees C under constant bias conditions is demonstrated at 12.5-Gb/s data rate. At these fixed bias conditions the laser characteristics are practically invariant with(More)
A novel long-wavelength vertical-cavity surface-emitting laser (VCSEL) structure based on a subwavelength high-contrast grating (HCG) as the output mirror has been realized. By design, these devices are highly polarization stable, are single mode at large apertures, and solve the VCSEL-mirror problem at long wavelengths in an elegant way. With(More)
We present an extended ensemble Monte Carlo approach, allowing for the self-consistent modeling of terahertz difference frequency generation in quantum cascade lasers. Our simulations are validated against available experimental data for a current room temperature design. Tera-hertz output powers in the mW range are predicted for ideal light extraction.
Utilizing narrow band gap nanowire (NW) materials to extend nanophotonic applications to the mid-infrared spectral region (>2-3 μm) is highly attractive, however, progress has been seriously hampered due to their poor radiative efficiencies arising from nonradiative surface and Auger recombination. Here, we demonstrate up to ~ 10(2) times enhancements of(More)
In this paper, the enhanced high-speed performance and energy-efficiency of 1.3 μm Short-Cavity VCSEL with buried-tunnel-junction is reported. Error-free data-transmission at 30 Gb/s up to 10 km and at 25 Gb/s up to 25 km is performed at room temperature over single mode fiber. Furthermore, low energy-to-data-distance ratios of 24 fJ/(bit·km)(More)
Gradient metasurfaces have recently been demonstrated to provide control of the phase of scattered fields over sub-wavelength scales, enabling a broad range of linear optical components in a flat, ultrathin, integrable platform. Additionally, the development of nonlinear metasurfaces has disrupted conventional nonlinear optical device design by relaxing(More)
The heterogeneous integration of InP-based type-II quantum well photodiodes on silicon photonic integrated circuits for the 2 µm wavelength range is presented. A responsivity of 1.2 A/W at a wavelength of 2.32 µm and 0.6 A/W at 2.4 µm wavelength is demonstrated. The photodiodes have a dark current of 12 nA at -0.5 V at room temperature. The absorbing active(More)
Attosecond photoelectron streaking spectroscopy allows time-resolved electron dynamics with a temporal resolution approaching the atomic unit of time. Studies have been performed in numerous systems, including atoms, molecules, and surfaces, and the quest for ever higher temporal resolution called for ever wider spectral extent of the attosecond pulses. For(More)
Eight chemical transport models participate in a model intercomparison study for East Asia, MICS-Asia II. This paper analyzes calculated results for particulate matter of sulfate, nitrate and ammonium through comparisons with each other and with monthly measurements at EANET (the acid deposition monitoring network in East Asia) and daily measurements at(More)