Markus Berli

Learn More
Soil compaction represents one of the most ubiquitous environmental impacts of human development, decreasing bulk-scale soil porosity and hydraulic conductivity, thereby reducing soil productivity and fertility. At the aggregate-scale however, this study shows that natural root-induced compaction increases contact areas between aggregates, leading to an(More)
The rhizosphere, the soil immediately surrounding roots, provides a critical bridge for water and nutrient uptake. The rhizosphere is influenced by various forms of root–soil interactions of which mechanical deformation due to root growth and its effects on the hydraulics of the rhizosphere are the least studied. In this work, we focus on developing new(More)
Soil structure degradation by fire is usually attributed to qualitative and quantitative change of organic and inorganic binding agents, especially in high severity burns (>300 °C) that last for prolonged periods (> 1 hour). In contrast, controlled burns are typically managed to be low in intensity and severity. Such burns are considered benign to soil(More)
The tibial component of current knee prostheses made of ultra high molecular weight polyethylene (UHMWPE) has a high degree of wear that causes knee inflammation, prosthesis loosening and subsequent replacement in not more than 15 years. In order to know which UHMWPE material properties have more influence on wear, a steady state lubrication model with(More)
  • 1