Learn More
Novelty detection is the identification of new or unknown data or signal that a machine learning system is not aware of during training. Novelty detection is one of the fundamental requirements of a good classification or identification system since sometimes the test data contains information about objects that were not known at the time of training the(More)
We present a new framework for novelty detection. The framework evaluates neural networks as adaptive classifiers that are capable of novelty detection and retraining on the basis of newly discovered information. We apply our newly developed model to the application area of object recognition in video. We detail the tools and methods needed for novelty(More)
This paper proposes a new model of "novelty detection" for image sequence analysis using neural networks. This model uses the concept of artificially generated negative data to form closed decision boundaries using a multilayer perceptron. The neural network output is novelty filtered by thresholding the output of multiple networks (one per known class) to(More)
In this paper we apply artificial neural networks for classifying texture data of various natural objects found in FLIR images. Hermite functions are used for texture feature extraction from segmented regions of interest in natural scenes taken as a video sequence. A total of 2680 samples for a total of twelve different classes are used for object(More)
One of the major issues in novelty detection for video and image analysis application is how to recognize objects that are not in full view. As the camera pans, tilts and zooms, image objects within a scene are never in full view and enter and exit image frames with time. These objects with partial view do not contain enough number of pixels that can(More)
It is now well-established that k nearest-neighbour classi"ers o!er a quick and reliable method of data classi"cation. In this paper we extend the basic de"nition of the standard k nearest-neighbour algorithm to include the ability to resolve con#icts when the highest number of nearest neighbours are found for more than one training class (model-1). We also(More)