Markos A. Alexandrou

Learn More
The coexistence of competing species depends on the balance between their fitness differences, which determine their competitive inequalities, and their niche differences, which stabilise their competitive interactions. Darwin proposed that evolution causes species' niches to diverge, but the influence of evolution on relative fitness differences, and the(More)
Freshwater fish evolution has been shaped by changes in the earth's surface involving changes in the courses of rivers and fluctuations in sea level. The main objective of this study is to improve our knowledge of the evolution of loricariids, a numerous and adaptive group of freshwater catfish species, and the role of geological changes in their evolution.(More)
Until recently, the study of negative and antagonistic interactions (for example, competition and predation) has dominated our understanding of community structure, maintenance and assembly. Nevertheless, a recent theoretical model suggests that positive interactions (for example, mutualisms) may counterbalance competition, facilitating long-term(More)
A longstanding concept in community ecology is that closely related species compete more strongly than distant relatives. Ecologists have invoked this "limiting similarity hypothesis" to explain patterns in the structure and function of biological communities and to inform conservation, restoration, and invasive-species management. However, few studies have(More)
Phylogenetic tools and ‘tree-thinking’ approaches increasingly permeate all biological research. At the same time, phylogenetic data sets are expanding at breakneck pace, facilitated by increasingly economical sequencing technologies. Therefore, there is an urgent need for accessible, modular, and sharable tools for phylogenetic analysis. We developed a(More)
The competition-relatedness hypothesis (CRH) predicts that the strength of competition is the strongest among closely related species and decreases as species become less related. This hypothesis is based on the assumption that common ancestry causes close relatives to share biological traits that lead to greater ecological similarity. Although intuitively(More)
1. A long-standing hypothesis in ecology and evolutionary biology is that closely related species are more ecologically similar to each other and therefore compete more strongly than distant relatives do. A recent hypothesis posits that evolutionary relatedness may also explain the prevalence of mutualisms, with facilitative interactions being more common(More)
Phytoplankton species traits have been used to successfully predict the outcome of competition, but these traits are notoriously laborious to measure. If these traits display a phylogenetic signal, phylogenetic distance (PD) can be used as a proxy for trait variation. We provide the first investigation of the degree of phylogenetic signal in traits related(More)
  • 1