Learn More
A method for the single-trial estimation of the evoked potentials is proposed. The method is based on the so-called subspace regularization approach in which the second-order statistics of the set of the measurements is used to form a prior information model for the evoked potentials. The method is closely related to the Bayesian estimation. The performance(More)
In electrical impedance tomography (EIT), an estimate for the cross-sectional impedance distribution is obtained from the body by using current and voltage measurements made from the boundary. All well-known reconstruction algorithms use a full set of independent current patterns for each reconstruction. In some applications, the impedance changes may be so(More)
The accuracy of the head model affects the solutions of the EEG inverse problems. If a simple three-sphere model and standard conductivity values for brain, skull and scalp regions are used, significant errors may occur in the dipole localisation. One of the most sensitive head model parameters is the conductivity of the skull. A realistic three-dimensional(More)
In electrical impedance tomography an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. It is often assumed that the injected currents are confined to the two-dimensional (2-D) electrode plane and the reconstruction is based on 2-D(More)
The solution of impedance distribution in electrical impedance tomography is a nonlinear inverse problem that requires the use of a regularization method. The generalized Tikhonov regularization methods have been popular in the solution of many inverse problems. The regularization matrices that are usually used with the Tikhonov method are more or less ad(More)
Model reduction is often required in optical diffusion tomography (ODT), typically due to limited available computation time or computer memory. In practice, this often means that we are bound to use sparse meshes in the model for the forward problem. Conversely, if we are given more and more accurate measurements, we have to employ increasingly accurate(More)
Radiation therapy treatment planning is based on the calculation of the absorbed dose in the patient domain. For exact dose calculations, the solution of three coupled Boltzmann transport equations (BTEs) is needed to cover the transport of photons, electrons and positrons. In many situations, however, two coupled systems for photons and electrons are(More)
Iodine-123 labelled 2β-carbomethoxy-3β-(4-iodophenyl) (nor-β-CIT) is an analogue of β-CIT, which has high affinity to the serotonin transporter. Initial single-photon emission tomography (SPET) studies with [123I]nor-β-CIT were performed in five healthy volunteers. In addition, its metabolism in plasma was investigated with gradient high performance liquid(More)
In electrical impedance tomography (EIT), difference imaging is often preferred over static imaging. This is because of the many unknowns in the forward modelling which make it difficult to obtain reliable absolute resistivity estimates. However, static imaging and absolute resistivity values are needed in some potential applications of EIT. In this paper(More)
In this paper, a coupled radiative transfer equation and diffusion approximation model is extended for light propagation in turbid medium with low-scattering and non-scattering regions. The light propagation is modelled with the radiative transfer equation in sub-domains in which the assumptions of the diffusion approximation are not valid. The diffusion(More)