Learn More
BACKGROUND The geometrid moths of Europe are one of the best investigated insect groups in traditional taxonomy making them an ideal model group to test the accuracy of the Barcode Index Number (BIN) system of BOLD (Barcode of Life Datasystems), a method that supports automated, rapid species delineation and identification. METHODOLOGY/PRINCIPAL FINDINGS(More)
Many cold adapted species occur in both montane settings and in the subarctic. Their disjunct distributions create taxonomic complexity because there is no standardized method to establish whether their allopatric populations represent single or different species. This study employs DNA barcoding to gain new perspectives on the levels and patterns of(More)
BACKGROUND The moth family Geometridae (inchworms or loopers), with approximately 23,000 described species, is the second most diverse family of the Lepidoptera. Apart from a few recent attempts based on morphology and molecular studies, the phylogeny of these moths has remained largely uninvestigated. METHODOLOGY/PRINCIPAL FINDINGS We performed a(More)
With 400 K described species, beetles (Insecta: Coleoptera) represent the most diverse order in the animal kingdom. Although the study of their diversity currently represents a major challenge, DNA barcodes may provide a functional, standardized tool for their identification. To evaluate this possibility, we performed the first comprehensive test of the(More)
We explore the potential value of DNA barcode divergence for species delimitation in the genus Caryocolum Gregor & Povolný, 1954 (Lepidoptera, Gelechiidae), based on data from 44 European species (including 4 subspecies). Low intraspecific divergence of the DNA barcodes of the mtCOI (cytochrome c oxidase 1) gene and/or distinct barcode gaps to the nearest(More)
Rapid development of broad regional and international DNA barcode libraries have brought new insights into the species diversity of many areas and groups. Many new species, even within well-investigated species groups, have been discovered based initially on differences in DNA barcodes. We barcoded 437 collection specimens belonging to 40 pre-identified(More)
This study examines the performance of DNA barcodes (mt cytochrome c oxidase 1 gene) in the identification of 1004 species of Lepidoptera shared by two localities (Finland, Austria) that are 1600 km apart. Maximum intraspecific distances for the pooled data were less than 2% for 880 species (87.6%), while deeper divergence was detected in 124 species.(More)
The taxonomy of Kessleria, a highly specialized montane genus of Yponomeutidae with larval host restriction to Saxifragaceae and Celastraceae (Saxifraga spp. - subgenus Kessleria; Saxifraga spp. and Parnassia spp. - subgenus Hofmannia), is revised based on external morphology, genitalia and DNA barcodes. An integrative taxonomic approach supports the(More)
The accelerating loss of biodiversity has created a need for more effective ways to discover species. Novel algorithmic approaches for analyzing sequence data combined with rapidly expanding DNA barcode libraries provide a potential solution. While several analytical methods are available for the delineation of operational taxonomic units (OTUs), few(More)
Each holotype specimen provides the only objective link to a particular Linnean binomen. Sequence information from them is increasingly valuable due to the growing usage of DNA barcodes in taxonomy. As type specimens are often old, it may only be possible to recover fragmentary sequence information from them. We tested the efficacy of short sequences from(More)