Learn More
We provide a final state selective experimental study on the direct double photoionization of the valence states of benzene and pyrrole. The experiment is carried out using a magnetic-bottle electron time-of-flight coincidence setup at the incident photon energy region of 25-120 eV. We discuss on the recently discovered phenomenon of so-called Cooper pair(More)
We show that the valence band response to photon impact in metallic nanoparticles is highly energy dependent. This is seen as drastic variations of cross sections in valence photoionization of free and initially charge-neutral nanosized metal clusters. The effect is demonstrated in a combined experimental and theoretical study of Rb clusters. The(More)
The connection between the electronic polarizability and the decrease of the system size from macroscopic solid to nanoscale clusters has been addressed in a combined experimental and model-calculation study. A beam of free neutral potassium chloride clusters has been probed using synchrotron-radiation-based photoelectron spectroscopy. The introduction of(More)
The solvation of alkali-halides in water clusters at nanoscale is studied by photoelectron spectroscopy using synchrotron radiation. The Na 2p, K 3p, Cl 2p, Br 3d, and I 4d core level binding energies have been measured for salt-containing water clusters. The results have been compared to those of alkali halide clusters and the dilute aqueous salt(More)
In this paper we demonstrate how surface site specific experimental information can be obtained from free low nanometer scale clusters using photoelectron spectroscopy utilising synchrotron radiation. In addition, we show how it can be used to gain insight into the geometry and surface structure of the clusters. The present experiments were conducted on(More)
Auger decay of an inner shell hole is an efficient way to create multiply charged ions in the gas phase. We illustrate this with the example of the argon 2s decay, and show that multi-electron coincidence spectroscopy between the 2s photoelectron and all released Auger electrons leads to a complete reconstruction of the Ar 2s decay cascade. Spectra of the(More)
Direct measurements of the photoelectrons or Auger electrons associated with inner shell ionization of positively charged ions are extremely difficult and rarely realized. We propose an alternative method to simulate such measurements, based on core valence double photoionization of the neutral species. As an example, we obtain the spectroscopy, lifetimes,(More)
We report on vacuum ultraviolet (VUV) excited photoluminescence (PL) spectra emitted from a chemical vapor deposited MoS2 few-layered film. The excitation spectrum was recorded by monitoring intensities of PL spectra at ~1.9 eV. A strong wide excitation band peaking at 7 eV was found in the excitation. The PL excitation band is most intensive at liquid(More)
In this work, the photofragmentation subsequent to valence and Cd4d photoionization of cadmium dichloride (CdCl(2)) were studied using He I and synchrotron excitation. The measurements were performed with a photoelectron-photoion coincidence (PEPICO) setup, and the connection between the singly ionized electronic states and cationic fragments was(More)
Electron spins of the doped monolayer MoS2 were aligned by placing two magnetic impurities at sulfur vacancies, both on the same side and different sides of the slab. Origins of the calculated magnetisms are beyond most conventional physical models, yet interactions of single-molecule magnets are tentatively proposed.