Mark Wijtvliet

Learn More
—Hardware accelerators in heterogeneous multipro-cessor system-on-chips are becoming popular as a means of meeting performance and energy efficiency requirements of modern embedded systems. Current design methods for accelerator synthesis, such as High-Level Synthesis, are not fully automated. Therefore, time consuming manual iterations are required to(More)
Approximate computing, the technique that sacrifices certain amount of accuracy in exchange for substantial performance boost or power reduction, is one of the most promising solutions to enable power control and performance scaling towards exascale. Although most existing approximation designs target the emerging data-intensive applications that are(More)
Heterogeneous Multiprocessor systems-on-chip (HMPSoC) are becoming popular as a means of meeting energy efficiency requirements of modern embedded systems. However, as these HMPSoCs run multimedia applications as well, they also need to meet realtime requirements. Designing HMPSoCs with predictable timing behavior is a key challenge, as the current design(More)
Good tool support is essential for computing platforms because they increase the programmability of the platform. This is especially the case for reconfigurable architectures because an application needs to be mapped on the architecture for each configuration individually. This paper investigates how the LLVM framework can be used to generate code for a(More)
Hardware accelerators in heterogeneous multiprocessor system-on-chips are becoming popular as a means of meeting performance and energy efficiency requirements of modern embedded systems. Current design methods for accelerator synthesis, such as High-Level Synthesis, are not fully automated. Therefore, time consuming manual iterations are required to(More)
Reconfigurable architectures become more popular now general purpose compute performance does not increase as rapidly as before. Field programmable gate arrays are slowly moving into the direction of Coarse Grain Reconfigurable Architectures (CGRA) by adding DSP and other coarse grained IP blocks, general purpose processors become more heterogeneous and(More)
In modern embedded systems, heterogeneous architectures are crucial in achieving desired performance requirements under area and energy constraints. Many of these systems combine a multi-processor system-on-chip and a Field Programmable Gate Array to enable hardware acceleration. Although the introduction of High-Level Synthesis significantly reduced the(More)
Mismatch between operand width and hardware operation width is a source of energy inefficiency. This work proposes multi-granular arithmetic, which can adapt the hardware operation width to the application, preventing energy being wasted. In particular multi-granular arithmetic in the context of coarse-grain reconfigurable architectures is considered for(More)
  • 1