Mark W. Pellegrino

Learn More
To better understand the response to mitochondrial dysfunction, we examined the mechanism by which ATFS-1 (activating transcription factor associated with stress-1) senses mitochondrial stress and communicates with the nucleus during the mitochondrial unfolded protein response (UPR(mt)) in Caenorhabditis elegans. We found that the key point of regulation is(More)
Mitochondria are compartmentalized organelles essential for numerous cellular functions including ATP generation, iron-sulfur cluster biogenesis, nucleotide and amino acid metabolism as well as apoptosis. To promote biogenesis and proper function, mitochondria have a dedicated repertoire of molecular chaperones to facilitate protein folding and quality(More)
Metazoans identify and eliminate bacterial pathogens in microbe-rich environments such as the intestinal lumen; however, the mechanisms are unclear. Host cells could potentially use intracellular surveillance or stress response programs to detect pathogens that target monitored cellular activities and then initiate innate immune responses. Mitochondrial(More)
Mitochondrial dysfunction is pervasive in human pathologies such as neurodegeneration, diabetes, cancer, and pathogen infections as well as during normal aging. Cells sense and respond to mitochondrial dysfunction by activating a protective transcriptional program known as the mitochondrial unfolded protein response (UPR(mt)), which includes genes that(More)
Mitochondrial diseases and aging are associated with defects in the oxidative phosphorylation machinery (OXPHOS), which are the only complexes composed of proteins encoded by separate genomes. To better understand genome coordination and OXPHOS recovery during mitochondrial dysfunction, we examined ATFS-1, a transcription factor that regulates(More)
Morphogenesis represents a phase of development during which cell fates are executed. The conserved hox genes are key cell fate determinants during metazoan development, but their role in controlling organ morphogenesis is less understood. Here, we show that the C. elegans hox gene lin-39 regulates epidermal morphogenesis via its novel target, the essential(More)
Mitochondrial genomes (mitochondrial DNA, mtDNA) encode essential oxidative phosphorylation (OXPHOS) components. Because hundreds of mtDNAs exist per cell, a deletion in a single mtDNA has little impact. However, if the deletion genome is enriched, OXPHOS declines, resulting in cellular dysfunction. For example, Kearns-Sayre syndrome is caused by a single(More)
A full-length cDNA (Tv-ant-1) encoding an adenine nucleotide translocator (ANT or ADP/ATP translocase) (Tv-ANT-1) was isolated from Trichostrongylus vitrinus (order Strongylida), an economically important parasitic nematode of small ruminants. The uninterrupted open reading frame (ORF) of 894 nucleotides encoded a predicted protein of 297 amino acids,(More)
Morphogenesis is a developmental phase during which cell fates are executed. Mechanical forces shaping individual cells play a key role during tissue morphogenesis. By investigating morphogenesis of the Caenorhabditis elegans hermaphrodite vulva, we show that the force-generating actomyosin network is differentially regulated by NOTCH and EGFR/RAS/MAPK(More)
Adenine nucleotide translocators (ANTs) belong to the mitochondrial carrier family (MCF) of proteins. ATP production and consumption are tightly linked to ANTs, the kinetics of which have been proposed to play a key regulatory role in mitochondrial oxidative phosphorylation. ANTs are also recognized as a central component of the mitochondrial permeability(More)