Mark W. Morrison

Learn More
Several DNA extraction methods have been reported for use with digesta or fecal samples, but problems are often encountered in terms of relatively low DNA yields and/or recovering DNA free of inhibitory substances. Here we report a modified method to extract PCR-quality microbial community DNA from these types of samples, which employs bead beating in the(More)
In this study, the collective microbial diversity in anaerobic digesters was examined using a meta-analysis approach. All 16S rRNA gene sequences recovered from anaerobic digesters available in public databases were retrieved and subjected to phylogenetic and statistical analyses. As of May 2010, 16,519 bacterial and 2869 archaeal sequences were found in(More)
Metagenomic and bioinformatic approaches were used to characterize plant biomass conversion within the foregut microbiome of Australia's "model" marsupial, the Tammar wallaby (Macropus eugenii). Like the termite hindgut and bovine rumen, key enzymes and modular structures characteristic of the "free enzyme" and "cellulosome" paradigms of cellulose(More)
In this study, the collective microbial diversity in the rumen was examined by performing a meta-analysis of all the curated 16S rRNA gene (rrn) sequences deposited in the RDP database. As of November 2010, 13,478 bacterial and 3516 archaeal rrn sequences were found. The bacterial sequences were assigned to 5271 operation taxonomic units (OTUs) at species(More)
We divided the adhesion process of the predominant cellulolytic rumen bacteria Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus into four phases: 1) transport of the nonmotile bacteria to the substrate; 2) initial nonspecific adhesion of bacteria to unprotected sites of the substrate that is dominated by constitutive elements of(More)
It is well recognized that a dynamic biofilm develops upon plant biomass in the herbivore gastrointestinal tract, but this component of the microbiome has not previously been specifically sampled, or directly compared with the biodiversity present in the planktonic fraction of digesta. In this study, the digesta collected from four sheep fed two different(More)
Lignocellulosic biomass remains a largely untapped source of renewable energy predominantly due to its recalcitrance and an incomplete understanding of how this is overcome in nature. We present here a compositional and comparative analysis of metagenomic data pertaining to a natural biomass-converting ecosystem adapted to austere arctic nutritional(More)
The degradation of plant cell walls by ruminants is of major economic importance in the developed as well as developing world. Rumen fermentation is unique in that efficient plant cell wall degradation relies on the cooperation between microorganisms that produce fibrolytic enzymes and the host animal that provides an anaerobic fermentation chamber.(More)
Supplementary Figure 2 Scaffold-contig visualization of different binning methods for the WG-2 population in the Tammar wallaby metagenome sample. Supplementary Figure 3 Evaluation of different binning methods on short fragments of varying lengths. Supplementary Figure 4 Overlap between predictions of different methods on the TW sample for the three(More)
The Tammar wallaby (Macropus eugenii) harbors unique gut bacteria and produces only one-fifth the amount of methane produced by ruminants per unit of digestible energy intake. We have isolated a dominant bacterial species (WG-1) from the wallaby microbiota affiliated with the family Succinivibrionaceae and implicated in lower methane emissions from(More)