Learn More
Adult wounds heal with scar-tissue formation, whereas fetal wounds heal without scarring and with a lesser inflammatory and cytokine response. We injected the margins of healing dermal wounds in adult rats with neutralising antibody (NA) to transforming growth factor-beta (TGF-beta). All control wounds (irrelevant antibody, or TGF-beta, or no injection)(More)
Trauma by suturing tendon form areas devoid of cells termed "acellular zones" in the matrix. This study aimed to characterise the cellular insult of suturing and acellular zone formation in mouse tendon. Acellular zone formation was evaluated using single grasping sutures placed using flexor tendons with time lapse cell viability imaging for a period of(More)
In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse aesthetics, loss of function, restriction of tissue movement and/or growth and adverse psychological effects. Current treatments are empirical, unreliable and unpredictable: there are no prescription drugs for(More)
OBJECTIVE This study investigated the influence of the fetal environment on the healing characteristics of adult skin. SUMMARY BACKGROUND DATA The remarkable ability of the fetus to heal without scarring is poorly understood. The unique qualities of fetal wound healing may be caused by the fetal environment, the fetal tissues, or a combination of both.(More)
Wound healing is a complex process involving the interaction of many cell types with the extracellular matrix (ECM). Fetal skin wound healing differs from that in the adult in that it occurs rapidly and without scar formation. The mechanisms underlying these differing processes may be related to the fetal environment, the stage of differentiation of the(More)
We develop a novel mathematical model for collagen deposition and alignment during dermal wound healing. We focus on the interactions between fibroblasts, modelled as discrete entities, and a continuous extracellular matrix composed of collagen and a fibrin based blood clot. There are four basic interactions assumed in the model: fibroblasts orient the(More)
BACKGROUND Research into mechanisms of skin scarring identified transforming growth factor beta3 (TGFbeta3) as a potential antiscarring therapy. We assessed scar improvement with avotermin (recombinant, active, human TGFbeta3). METHODS In three double-blind, placebo-controlled studies, intradermal avotermin (concentrations ranging from 0.25 to 500 ng/100(More)
We have investigated the effect of scarring at a site of peripheral nerve repair by comparing regeneration of the sciatic nerve in normal mice and two transgenic strains with an increased or decreased propensity for scarring. The outcome was assessed by quantifying collagen at the repair site, recording compound action potentials and counting myelinated(More)
Keloids are benign skin tumours occurring during wound healing in genetically predisposed patients. They are characterized by an abnormal deposition of extracellular matrix components, particularly collagen. There is uncertain evidence that transforming growth factor-beta (TGFss) is involved in keloid formation. Therefore we investigated the expression of(More)
Scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in loss of function, restriction of tissue movement and adverse psychological effects. Whilst various studies have utilised a range of model systems that have increased our understanding of the pathways and processes underlying scar formation, they(More)