Learn More
Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic ankle-foot stiffness to balance, and the ankle-foot stiffness(More)
In many simple walking models, foot placement dictates the center of pressure location and ground reaction force components, whereas humans can modulate these aspects after foot contact. Because of the differences, it is unclear to what extent predictions made by models are valid for human walking. Yet, both model simulations and human experimental data(More)
We present a novel control approach for assistive lower-extremity exoskeletons. In particular, we implement a virtual pivot point (VPP) template model inspired leg force feedback based controller on a lower-extremity powered exoskeleton (LOPES II) and demonstrate that it can effectively assist humans during walking. It has been shown that the VPP template(More)
KEY POINTS The vestibular influence on human walking is phase-dependent and modulated across both limbs with changes in locomotor velocity and cadence. Using a split-belt treadmill, we show that vestibular influence on locomotor activity is modulated independently in each limb. The independent vestibular modulation of muscle activity from each limb occurs(More)
  • 1