Mark Triplett

  • Citations Per Year
Learn More
Transition metal dichalcogenides (TMDs) have emerged as a new class of two-dimensional materials that are promising for electronics and photonics. To date, optoelectronic measurements in these materials have shown the conventional behavior expected from photoconductors such as a linear or sublinear dependence of the photocurrent on light intensity. Here, we(More)
Flexible electronics utilizing single crystalline semiconductors typically require post-growth processes to assemble and incorporate the crystalline materials onto flexible substrates. Here we present a high-precision transfer-printing method for vertical arrays of single crystalline semiconductor materials with widely varying aspect ratios and densities(More)
Nanowires have large surface areas that create new challenges for their optoelectronic applications. Lithographic processes involved in device fabrication and substrate interfaces can lead to surface defects and substantially reduce charge carrier lifetimes and diffusion lengths. Here, we show that using a bridging method to suspend pristine nanowires(More)
Chris Miller,1 Mark Triplett,1 Joel Lammatao,1 Joonki Suh,2 Deyi Fu,2,3 Junqiao Wu,2 and Dong Yu1,* 1Department of Physics, University of California, Davis, California 95616, USA 2Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA 3Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic(More)
A unique way of robustly integrating an elastomer fi lm onto a graphitic anode and then post-process it into a solid-state electrolyte for lithium-ion battery applications is reported. The mutual solvability of the elastomer and the binder of the graphitic anode (carboxymethyl cellulose, (CMC)) in dimethylformamide facilitates the fusion of the two(More)
  • 1