Mark Thompson

Learn More
Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene(More)
This study aimed to mechanically produce a standardized ovine model for a critically delayed bone union. A tibial osteotomy was stabilized with either a rigid (group I) or mechanically critical (group II) external fixator in sheep. Interfragmentary movements and ground reaction forces were monitored throughout the healing period of 9 weeks. After sacrifice(More)
The FANTOM5 project investigates transcription initiation activities in more than 1,000 human and mouse primary cells, cell lines and tissues using CAGE. Based on manual curation of sample information and development of an ontology for sample classification, we assemble the resulting data into a centralized data resource ( http://fantom.gsc.riken.jp/5/ ).(More)
Compromised angiogenesis appears to be a major limitation in various suboptimal bone healing situations. Appropriate mechanical stimuli support blood vessel formation in vivo and improve healing outcomes. However, the mechanisms responsible for this association are unclear. To address this question, the paracrine angiogenic potential of early human fracture(More)
In fracture and bone defect healing, MSCs largely drive tissue regeneration. MSCs have been shown to promote angiogenesis both in vivo and in vitro. Angiogenesis is a prerequisite to large tissue reconstitution. The present study investigated how mechanical loading of MSCs influences their proangiogenic capacity. The results show a significant enhancement(More)
There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders-representing academia, industry, funding agencies, and scholarly publishers-have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that(More)
BACKGROUND Large interfragmentary movements may delay bone-healing. The hypothesis of the present study was that a reduction of interfragmentary movements, especially of torsional rotation and bending angles, would support the healing process and lead to improved healing following unreamed tibial nailing. The objective of this study was to investigate(More)
Elastic fibres have the unique ability to withstand large deformations and are found in numerous tissues, but their organization and structure have not been well defined in tendon. The objective of this study was to characterize the organization of elastic fibres in tendon to understand their function. Immunohistochemistry was used to visualize elastic(More)
BACKGROUND Augmentation of rotator cuff tears aims to strengthen the repair and reduce rerupture, yet studies still report high failure rates. This study determines key mechanical properties of rotator cuff repair patches, including establishing values for toughness and measuring the shear properties of repair patches and human rotator cuff tendons. We(More)
Daedalus is a system-level design flow for the design of multiprocessor system-on-chip (MP-SoC) based embedded multimedia systems. It offers a fully integrated tool-flow in which design space exploration (DSE), system-level synthesis, application mapping, and system prototyping of MP-SoCs are highly automated. In this paper, we describe our first industrial(More)