Learn More
Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene(More)
Daedalus is a system-level design flow for the design of multiprocessor system-on-chip (MP-SoC) based embedded multimedia systems. It offers a fully integrated tool-flow in which design space exploration (DSE), system-level synthesis, application mapping, and system prototyping of MP-SoCs are highly automated. In this paper, we describe our first industrial(More)
In this paper, we present the Daedalus framework, which allows for traversing the path from sequential application specification to a working MP-SoC prototype in FPGA technology with the (parallelized) application mapped onto it in only a matter of hours. During this traversal, which offers a high degree of automation, guidance is provided by Daedalus'(More)
— System-level simulation and design space exploration (DSE) are key ingredients for the design of multiprocessor system-on-chip (MP-SoC) based embedded systems. The efforts in this area, however, typically use ad-hoc software infrastructures to facilitate and support the system-level DSE experiments. In this paper, we present a new, generic system-level(More)
The FANTOM5 project investigates transcription initiation activities in more than 1,000 human and mouse primary cells, cell lines and tissues using CAGE. Based on manual curation of sample information and development of an ontology for sample classification, we assemble the resulting data into a centralized data resource ( http://fantom.gsc.riken.jp/5/ ).(More)
— High-level performance modeling and simulation have become a key ingredient of system-level design as they facilitate early architectural design space exploration. An important precondition for such high-level modeling and simulation methods is that they should yield trustworthy performance estimations. This requires validation (if possible) and(More)
The high complexity of modern embedded systems impels designers of such systems to model and simulate system components and their interactions in the early design stages. It is therefore essential to develop good tools for exploring a wide range of design choices at these early stages, where the design space is very large. This paper provides an overview of(More)
High-level performance modeling and simulation have become a key ingredient of system-level design as they facilitate early architectural design space exploration. An important precondition for such high-level modeling and simulation methods is that they should yield trustworthy performance estimations. This requires validation (if possible) and calibration(More)