Mark T. Palfreyman

Learn More
Synaptic vesicles dock to the plasma membrane at synapses to facilitate rapid exocytosis. Docking was originally proposed to require the soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) proteins; however, perturbation studies suggested that docking was independent of the SNARE proteins. We now find that the SNARE protein(More)
Mutations in ric-3 (resistant to inhibitors of cholinesterase) suppress the neuronal degenerations caused by a gain of function mutation in the Caenorhabditis elegans DEG-3 acetylcholine receptor. RIC-3 is a novel protein with two transmembrane domains and extensive coiled-coil domains. It is expressed in both muscles and neurons, and the protein is(More)
Nuclear receptors (NRs) are a large class of ligand-regulated transcriptional modulators that have been shown to play roles in many developmental processes. The Caenorhabditis elegans genome is predicted to encode a large and divergent family of NR proteins. The functions of most of these genes are unknown. As a first step toward defining their roles, we(More)
The complex lipid constituents of the eukaryotic plasma membrane are precisely controlled in a cell-type-specific manner, suggesting an important, but as yet, unknown cellular function. Neuronal membranes are enriched in long-chain polyunsaturated fatty acids (LC-PUFAs) and alterations in LC-PUFA metabolism cause debilitating neuronal pathologies. However,(More)
Mating induces pronounced changes in female reproductive behavior, typically including a dramatic reduction in sexual receptivity. In Drosophila, postmating behavioral changes are triggered by sex peptide (SP), a male seminal fluid peptide that acts via a receptor (SPR) expressed in sensory neurons (SPSNs) of the female reproductive tract. Here, we identify(More)
Tetraspan vesicle membrane proteins (TVPs) comprise a major portion of synaptic vesicle proteins, yet their contribution to the synaptic vesicle cycle is poorly understood. TVPs are grouped in three mammalian gene families: physins, gyrins, and secretory carrier-associated membrane proteins (SCAMPs). In Caenorhabditis elegans, only a single member of each(More)
Mutations in unc-46 in Caenorhabditis elegans cause defects in all behaviors that are mediated by GABA. Here we show that UNC-46 is a sorting factor that localizes the vesicular GABA transporter to synaptic vesicles. The UNC-46 protein is related to the LAMP (lysosomal associated membrane protein) family of proteins and is localized at synapses. In unc-46(More)
Membranes provide a barrier that allows chemical reactions to be isolated from the environment. The plasma membrane, for example, delineates self from nonself, and thus must have played an essential role in the evolution of life. Yet under numerous circumstances it is equally important that membranes be breached. Numerous forces oppose the spontaneous(More)
Protein kinase C has long been thought to mediate DAG signaling at the synapse. Recently PKC has been supplanted by members of the Unc13 family as the predominant effectors of DAG signaling. Thanks to a study by Wierda and colleagues in this issue of Neuron, PKC returns to reclaim part of the kingdom: both pathways must be active to activate presynaptic(More)