Learn More
RATIONALE Orai1 and the associated calcium release-activated calcium (CRAC) channel were discovered in the immune system. Existence also in endothelial cells has been suggested, but the relevance to endothelial biology is mostly unknown. OBJECTIVE The aim of this study was to investigate the relevance of Orai1 and CRAC channels to vascular endothelial(More)
BACKGROUND Left ventricular (LV) mechanical dyssynchrony (LVMD) has emerged as a therapeutic target using cardiac resynchronization therapy (CRT) in selected patients with chronic heart failure. Current methods used to evaluate LVMD are technically difficult and do not assess LVMD of the whole LV simultaneously. We developed and validated real-time 3D(More)
The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca(2+)-permeable non-selective cationic channels for detection of noxious mechanical impact. Here we show Piezo1 (Fam38a) channels as(More)
RATIONALE Transient receptor potential melastatin (TRPM)3 is a calcium-permeable ion channel activated by the neurosteroid pregnenolone sulfate and positively coupled to insulin secretion in beta cells. Although vascular TRPM3 mRNA has been reported, there is no knowledge of TRPM3 protein or its regulation and function in the cardiovascular system. (More)
AIMS Over the last decade, advances in treatment for patients sustaining an acute myocardial infarction (AMI) have reduced mortality rates. We aimed to assess whether patients with diabetes mellitus (DM) have derived similar benefits as patients without DM. METHODS AND RESULTS We compared characteristics, management, and survival of patients with and(More)
Obesity and type 2 diabetes mellitus are characterized by insulin resistance, reduced bioavailability of the antiatherosclerotic signaling molecule nitric oxide (NO), and accelerated atherosclerosis. IGF-I, the principal growth-stimulating peptide, which shares many of the effects of insulin, may, like insulin, also be involved in metabolic and vascular(More)
Previous studies have suggested an involvement of inducible nitric oxide synthase (iNOS) in obesity, but the relation, if any, between this and mechanisms underlying endothelial dysfunction in obesity is unknown. We studied mice fed an obesogenic high-fat or standard diet for up to 8 weeks. Obesity was associated with elevated blood pressure; resistance to(More)
Black Africans have a higher incidence of cardiovascular disease than white Europeans. We explored potential mechanisms of this excess risk by assessing endothelium function, inflammatory status (C-reactive protein), oxidative stress (isoprostane-F2alpha), and plasma asymmetrical dimethyl arginine (ADMA; an endogenous competitive inhibitor of NO synthase)(More)
Type 2 diabetes and obesity are major risk factors for the development of cardiovascular atherosclerosis. Resistance to the metabolic effects of insulin on its traditional target tissues (muscle, liver and adipose tissue) is a central pathogenic feature of these disorders. However, the role of insulin resistance in non-canonical tissues, such as the(More)
Proliferation of adipocyte precursors and their differentiation into mature adipocytes contributes to the development of obesity in mammals. IGF-I is a potent mitogen and important stimulus for adipocyte differentiation. The biological actions of IGFs are closely regulated by a family of IGF-binding proteins (IGFBPs), which exert predominantly inhibitory(More)