Mark Steyvers

Learn More
A first step in identifying the content of a document is determining which topics that document addresses. We describe a generative model for documents, introduced by Blei, Ng, and Jordan [Blei, D. M., Ng, A. Y. & Jordan, M. I. (2003) J. Machine Learn. Res. 3, 993-1022], in which each document is generated by choosing a distribution over topics and then(More)
We introduce the author-topic model, a generative model for documents that extends Latent Dirichlet Allocation (LDA; Blei, Ng, & Jordan, 2003) to include authorship information. Each author is associated with a multinomial distribution over topics and each topic is associated with a multinomial distribution over words. A document with multiple authors is(More)
Processing language requires the retrieval of concepts from memory in response to an ongoing stream of information. This retrieval is facilitated if one can infer the gist of a sentence, conversation, or document and use that gist to predict related concepts and disambiguate words. This article analyzes the abstract computational problem underlying the(More)
We propose a new unsupervised learning technique for extracting information from large text collections. We model documents as if they were generated by a two-stage stochastic process. Each author is represented by a probability distribution over topics, and each topic is represented as a probability distribution over words for that topic. The words in a(More)
Statistical approaches to language learning typically focus on either short-range syntactic dependencies or long-range semantic dependencies between words. We present a generative model that uses both kinds of dependencies, and can be used to simultaneously find syntactic classes and semantic topics despite having no representation of syntax or semantics(More)
We propose an unsupervised learning technique for extracting information about authors and topics from large text collections. We model documents as if they were generated by a two-stage stochastic process. An author is represented by a probability distribution over topics, and each topic is represented as a probability distribution over words. The(More)
Machine learning approaches to multi-label document classification have to date largely relied on discriminative modeling techniques such as support vector machines. A drawback of these approaches is that performance rapidly drops off as the total number of labels and the number of labels per document increase. This problem is amplified when the label(More)
Information about the structure of a causal system can come in the form of observational data— random samples of the system’s autonomous behavior—or interventional data—samples conditioned on the particular values of one or more variables that have been experimentally manipulated. Here we study people’s ability to infer causal structure from both(More)
Techniques such as probabilistic topic models and latent-semantic indexing have been shown to be broadly useful at automatically extracting the topical or semantic content of documents, or more generally for dimension-reduction of sparse count data. These types of models and algorithms can be viewed as generating an abstraction from the words in a document(More)