Mark Skipsey

Learn More
Plant glutathione transferases (GSTs) are classified as enzymes of secondary metabolism, but while their roles in catalysing the conjugation and detoxification of herbicides are well known, their endogenous functions are largely obscure. Thus, while the presence of GST-derived S-glutathionylated xenobiotics have been described in many plants, there is(More)
S-Glutathionylation (thiolation) is a ubiquitous redox-sensitive and reversible modification of protein cysteinyl residues that can directly regulate their activity. While well established in animals, little is known about the formation and function of these mixed disulfides in plants. After labeling the intracellular glutathione pool with [35S]cysteine,(More)
Sequences encoding proteins with homology to protein tyrosine phosphatases have been identified in Arabidopsis, soybean and pea. Each contains a predicted catalytic domain containing sequence motifs characteristic of tyrosine-specific protein phosphatases (PTPs) which play an important role in signal transduction in other eukaryotes and are distinct from(More)
Unlike animals which accumulate glutathione (gamma-glutamyl-L-cysteinyl-glycine) alone as their major thiol antioxidant, several crops synthesize alternative forms of glutathione by varying the carboxy residue. The molecular basis of this variation is not well understood, but the substrate specificity of the respective GSs (glutathione synthetases) has been(More)
Plants respond to synthetic chemicals by eliciting a xenobiotic response (XR) that enhances the expression of detoxifying enzymes such as glutathione transferases (GSTs). In agrochemistry, the ability of safeners to induce an XR is used to increase herbicide detoxification in cereal crops. Based on the responsiveness of the model plant Arabidopsis thaliana(More)
Discovered 40 years ago, plant glutathione transferases (GSTs) now have a well-established role in determining herbicide metabolism and selectivity in crops and weeds. Within the GST superfamily, the numerous and plant-specific phi (F) and tau (U) classes are largely responsible for catalyzing glutathione-dependent reactions with xenobiotics, notably(More)
Glyoxalase I and glutathione transferase (GST) are two glutathione-dependent enzymes which are enhanced in plants during cell division and in response to diverse stress treatments. In soybean, a further connection between these two enzymes has been suggested by a clone (Accession No. X68819) resembling a GST being described as a glyoxalase I. To(More)
An RT-PCR-derived clone encoding a stress-inducible glutathione transferase (GSTGm1) from soybean has been overexpressed in E. coli. The enzyme was active as the dimer GSTGm1-1 and showed GST and glutathione peroxidase activity toward diverse xenobiotics, including analogues of natural stress-metabolites. The selective herbicides, fomesafen and acifluorfen,(More)
The diphenyl ether herbicide fomesafen can be used selectively in soybean (Glycine max) due to its rapid detoxification by tau class glutathione transferases (GmGSTUs) which preferentially utilize the endogenous thiol homoglutathione (hGSH) as cosubstrate. Soybean cDNAs encoding GmGSTU21, which is highly active in detoxifying fomesafen, and an hGSH(More)
By learning lessons from weed science we have adopted three approaches to make plants more effective in phytoremediation: (1) The application of functional genomics to identify key components involved in the detoxification of, or tolerance to, xenobiotics for use in subsequent genetic engineering/breeding programmes. (2) The rational metabolic engineering(More)