Learn More
This paper presents a new fading model for multi-input multi-output channels: the Jacobi fading model. It asserts that <formula formulatype="inline"><tex Notation="TeX">${\bf H}$</tex></formula>, the transfer matrix which couples the <formula formulatype="inline"><tex Notation="TeX">$m_{t}$</tex></formula> inputs into <formula formulatype="inline"><tex(More)
Modal dispersion (MD) in a multimode fiber may be considered as a generalized form of polarization mode dispersion (PMD) in single mode fibers. Using this analogy, we extend the formalism developed for PMD to characterize MD in fibers with multiple spatial modes. We introduce a MD vector defined in a D-dimensional extended Stokes space whose square length(More)
We study the properties of nonlinear interference noise (NLIN) in fiber-optic communications systems with large accumulated dispersion. Our focus is on settling the discrepancy between the results of the Gaussian noise (GN) model (according to which NLIN is additive Gaussian) and a recently published time-domain analysis, which attributes drastically(More)
The ultimate limits introduced by polarization dependent loss (PDL) in coherent polarization multiplexed systems using advanced signal processing are studied. An analytical framework for effectively assessing the penalties is established and applied to systems with and without dynamically optimized launch polarization control. In systems with no launch(More)
We demonstrate experimentally and describe analytically two important noise contributions in saturated semiconductor optical amplifiers. The first is spontaneous emission power enhancement that is due to the increased and spatially dependent inversion factor. The second is caused by a nonlinear interaction between the saturating signal and the amplifier(More)
We study random coupling induced crosstalk between groups of degenerate modes in spatially multiplexed optical transmission. Our analysis shows that the average crosstalk is primarily determined by the wavenumber mismatch, by the correlation length of the random perturbations, and by the coherence length of the degenerate modes, whereas the effect of a(More)
We analyze the achievable communication rates of a generalized soliton-based transmission system for the optical fiber channel. This method is based on modulation of parameters of the scattering domain, via the inverse scattering transform, by the information bits. The decoder uses the direct spectral transform to estimate these parameters and decode the(More)
We revisit the problem of estimating the nonlinear channel capacity of fiber-optic systems. By taking advantage of the fact that a large fraction of the nonlinear interference between different wavelength-division-multiplexed channels manifests itself as phase noise, and by accounting for the long temporal correlations of this noise, we show that the(More)
We show that light propagation in a group of degenerate modes of a multi-mode optical fiber in the presence of random mode coupling is described by a multi-component Manakov equation, thereby making multi-mode fibers the first reported physical system that admits true multi-component soliton solutions. The nonlinearity coefficient appearing in the equation(More)
We derive the fundamental equations describing nonlinear propagation in multi-mode fibers in the presence of random mode coupling within quasi-degenerate groups of modes. Our result generalizes the Manakov equation describing mode coupling between polarizations in single-mode fibers. Nonlinear compensation of the modal dispersion is predicted and tested via(More)