Learn More
Rydberg atoms with principal quantum number n ӷ 1 have exaggerated atomic properties including dipole-dipole interactions that scale as n 4 and radiative lifetimes that scale as n 3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom qubits. The availability of a strong long-range interaction(More)
We present the first demonstration of a CNOT gate between two individually addressed neutral atoms. Our implementation of the CNOT uses Rydberg blockade interactions between neutral atoms held in optical traps separated by >8 microm. Using two different gate protocols we measure CNOT fidelities of F=0.73 and 0.72 based on truth table probabilities. The gate(More)
We report on the nondestructive observation of Rabi oscillations on the Cs clock transition. The internal atomic state evolution of a dipole-trapped ensemble of cold atoms is inferred from the phase shift of a probe laser beam as measured using a Mach-Zehnder interferometer. We describe a single color as well as a two-color probing scheme. Using the latter,(More)
We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On the basis of quantitative calculations, we predict that an(More)
We propose a new physical approach for encoding and processing of quantum information in ensembles of multilevel quantum systems, where the different bits are not carried by individual particles but associated with the collective population of different internal levels. One- and two-bit gates are implemented by collective internal state transitions taking(More)
We propose to use a collective excitation blockade mechanism to identify errors that occur due to disturbances of single atoms in ensemble quantum registers where qubits are stored in the collective population of different internal atomic states. A simple error correction procedure and a simple decoherence-free encoding of ensemble qubits in the hyperfine(More)
We present experimental results on two-qubit Rydberg-blockade quantum gates and entanglement in a two-dimensional qubit array. Without postselection against atom loss we achieve a Bell state fidelity of 0.73 ± 0.05. The experiments are performed in an array of single Cs atom qubits with a site to site spacing of 3.8 μm. Using the standard protocol for a(More)
We describe and demonstrate a two-volume collective scattering system for localized measurements of plasma turbulence. The finite crossfield correlation length of plasma turbulence combined with spatial variations in the magnetic field direction are used to obtain spatially localized turbulence measurements at the Wendelstein 7-AS fusion experiment. By(More)