Learn More
We examine the quality of partitions produced by an iterative load balancer in parallel adaptive finite element calculations. We present several metrics which we use to evaluate the quality of a mesh partitioning, and report statistics generated from our analysis of adaptively refined meshes produced during the solution of computational fluid dynamics(More)
We present a high-order formulation for solving hyperbolic conservation laws using the Discon-tinuous Galerkin Method (DGM). We introduce an orthogonal basis for the spatial discretization and use explicit Runge-Kutta time discretization. Some results of higher-order adaptive refinement calculations are presented for in-viscid Rayleigh Taylor flow(More)
In this talk I will overview a survey paper developed from the DOE-­‐sponsored Institute for Computing in Science Workshop on " Multiphysics Simulations: Challenges and Opportunities. " In this paper, we considered multiphysics applications from algorithmic and architectural perspectives where " architectural " included both software and hardware(More)
An object-oriented framework for general numerical simulations has been developed that is designed to enable the rapid development of new analysis techniques. The framework is currently being used to implement finite element and partition of unity solution techniques. This paper discusses the overall design of the framework and gives details of how finite(More)
Implicit methods for partial differential equations using unstructured meshes allow for an efficient solution strategy for many real-world problems (e.g., simulation-based virtual surgical planning). Scalable solvers employing these methods not only enable solution of extremely-large practical problems but also lead to dramatic compression in(More)