Learn More
Voltage-gated Kv7 (KCNQ) channels underlie important K+ currents, including the neuronal M current, and are thought to be sensitive to membrane phosphatidylinositol 4,5-bisphosphate (PIP2) and PIP2 depletion to underlie muscarinic receptor inhibition. We studied regulation of Kv7.2-7.4 channels by PIP2 in Chinese hamster ovary (CHO) cells using(More)
Modulation of voltage-gated Ca2+ channels via G-protein-coupled receptors is a prime mechanism regulating neurotransmitter release and synaptic plasticity. Despite extensive studies, the molecular mechanism underlying Gq/11-mediated modulation remains unclear. We found cloned and native N-type Ca2+ channels to be regulated by phosphatidylinositol(More)
Channels from KCNQ2 and KCNQ3 genes have been suggested to underlie the neuronal M-type K(+) current. The M current is modulated by muscarinic agonists via G-proteins and an unidentified diffusible cytoplasmic messenger. Using whole-cell clamp, we studied tsA-201 cells in which cloned KCNQ2/KCNQ3 channels were coexpressed with M(1) muscarinic receptors.(More)
We characterized inhibition of N-type Ca2+ and M current K+ channels in rat superior cervical ganglion neurons by angiotensin II (angioII) using the patch clamp. Of 120 neurons, 97 showed inhibition of ICa (mean 32%), which was slow in onset and very slow to reverse under whole-cell recording conditions. This inhibition was blocked by the AT1 receptor(More)
There are five known subtypes of muscarinic receptors (M(1)-M(5)). We have used knockout mice lacking the M(1), M(2), or M(4) receptors to determine which subtypes mediate modulation of voltage-gated Ca(2+) channels in mouse sympathetic neurons. Muscarinic agonists modulate N- and L-type Ca(2+) channels in these neurons through two distinct(More)
Over the past decade, there has been an explosion in the number of membrane transport proteins that have been shown to be sensitive to the abundance of phosphoinositides in the plasma membrane. These proteins include voltage-gated potassium and calcium channels, ion channels that mediate sensory and nociceptive responses, epithelial transport proteins and(More)
The actions of N-ethylmaleimide (NEM), a sulfhydryl alkylating agent, on G-protein-mediated inhibition of N-type Ca2+ channels in adult rat superior cervical ganglion (SCG) neurons were studied using whole-cell voltage clamp. In SCG neurons, inhibition of ICa occurs by at least three separable pathways: one pertussis toxin (PTX) sensitive and voltage(More)
We studied inhibition of N-type Ca2+ channels in rat superior cervical ganglion neurons by substance P (SP) and somatostatin-14 (Som). In whole-cell clamp, 70 of 82 acutely dissociated neurons showed inhibition (mean 37%) by 500 nM SP, and 54 of 61 showed inhibition by 240 nM Som (mean 57%). Pertussis toxin (PTX) blocked Som but not SP inhibition;(More)
We studied regulation by c-Src tyrosine kinase (Src) of KCNQ1-5 channels heterologously expressed in Chinese hamster ovary (CHO) cells and of native M current in rat sympathetic neurons. Using whole-cell patch clamp, we found that Src modulates currents from KCNQ3, KCNQ4, and KCNQ5 homomultimers, KCNQ2/3 heteromultimers and native M current, but not(More)
Neural M-type (KCNQ/Kv7) K(+) channels control somatic excitability, bursting and neurotransmitter release throughout the nervous system. Their activity is regulated by multiple signalling pathways. In superior cervical ganglion sympathetic neurons, muscarinic M(1), angiotensin II AT(1), bradykinin B(2) and purinergic P2Y agonists suppress M current (I(M)).(More)