Learn More
Voltage-gated Kv7 (KCNQ) channels underlie important K+ currents, including the neuronal M current, and are thought to be sensitive to membrane phosphatidylinositol 4,5-bisphosphate (PIP2) and PIP2 depletion to underlie muscarinic receptor inhibition. We studied regulation of Kv7.2-7.4 channels by PIP2 in Chinese hamster ovary (CHO) cells using(More)
Channels from KCNQ2 and KCNQ3 genes have been suggested to underlie the neuronal M-type K(+) current. The M current is modulated by muscarinic agonists via G-proteins and an unidentified diffusible cytoplasmic messenger. Using whole-cell clamp, we studied tsA-201 cells in which cloned KCNQ2/KCNQ3 channels were coexpressed with M(1) muscarinic receptors.(More)
Modulation of voltage-gated Ca2+ channels via G-protein-coupled receptors is a prime mechanism regulating neurotransmitter release and synaptic plasticity. Despite extensive studies, the molecular mechanism underlying Gq/11-mediated modulation remains unclear. We found cloned and native N-type Ca2+ channels to be regulated by phosphatidylinositol(More)
Over the past decade, there has been an explosion in the number of membrane transport proteins that have been shown to be sensitive to the abundance of phosphoinositides in the plasma membrane. These proteins include voltage-gated potassium and calcium channels, ion channels that mediate sensory and nociceptive responses, epithelial transport proteins and(More)
We characterized inhibition of N-type Ca2+ and M current K+ channels in rat superior cervical ganglion neurons by angiotensin II (angioII) using the patch clamp. Of 120 neurons, 97 showed inhibition of ICa (mean 32%), which was slow in onset and very slow to reverse under whole-cell recording conditions. This inhibition was blocked by the AT1 receptor(More)
The regulation of M-type (KCNQ [Kv7]) K(+) channels by phosphatidylinositol 4,5-bisphosphate (PIP(2)) has perhaps the best correspondence to physiological signaling, but the site of action and structural motif of PIP(2) on these channels have not been established. Using single-channel recordings of chimeras of Kv7.3 and 7.4 channels with highly differential(More)
To quantify the modulation of KCNQ2/3 current by [Ca2+]i and to test if calmodulin (CaM) mediates this action, simultaneous whole-cell recording and Ca2+ imaging was performed on CHO cells expressing KCNQ2/3 channels, either alone, or together with wild-type (wt) CaM, or dominant-negative (DN) CaM. We varied [Ca2+]i from <10 to >400 nM with ionomycin (5(More)
There are five known subtypes of muscarinic receptors (M(1)-M(5)). We have used knockout mice lacking the M(1), M(2), or M(4) receptors to determine which subtypes mediate modulation of voltage-gated Ca(2+) channels in mouse sympathetic neurons. Muscarinic agonists modulate N- and L-type Ca(2+) channels in these neurons through two distinct(More)
Neural M-type (KCNQ/Kv7) K(+) channels control somatic excitability, bursting and neurotransmitter release throughout the nervous system. Their activity is regulated by multiple signalling pathways. In superior cervical ganglion sympathetic neurons, muscarinic M(1), angiotensin II AT(1), bradykinin B(2) and purinergic P2Y agonists suppress M current (I(M)).(More)
Neuronal M-channels are low threshold, slowly activating and non-inactivating, voltage dependent K(+) channels that play a crucial role in controlling neuronal excitability. The native M-channel is composed of heteromeric or homomeric assemblies of subunits belonging to the Kv7/KCNQ family, with KCNQ2/3 heteromers being the most abundant form. KCNQ2 and(More)