Mark S Schlissel

Learn More
The role of DNA methylation and of the maintenance DNA methyltransferase Dnmt1 in the epigenetic regulation of developmental stage- and cell lineage-specific gene expression in vivo is uncertain. This is addressed here through the generation of mice in which Dnmt1 was inactivated by Cre/loxP-mediated deletion at sequential stages of T cell development.(More)
Regulated expression of the recombinase RAG-1 and RAG-2 proteins is necessary for generating the vast repertoire of antigen receptors essential for adaptive immunity. Here, a retroviral cDNA library screen showed that the stress-regulated protein GADD45a activated transcription of the genes encoding RAG-1 and RAG-2 in transformed pro-B cells by a pathway(More)
Abelson murine leukemia virus-transformed cell lines have provided a critical model system for studying the regulation of B cell development. However, transformation by v-Abl blocks B cell development, resulting in the arrest of these transformants in an early pre-B cell-like state. We report here that treatment of Abelson virus-transformed pre-B cell lines(More)
Immunoglobulin heavy chain (IgH) variable region exons are assembled from V(H), D and J(H) gene segments in developing B lymphocytes. Within the 2.7-megabase mouse Igh locus, V(D)J recombination is regulated to ensure specific and diverse antibody repertoires. Here we report in mice a key Igh V(D)J recombination regulatory region, termed intergenic control(More)
Immunoglobulin and T-cell receptor genes are assembled during lymphocyte development by a novel, highly regulated series of gene rearrangement reactions known as V(D)J recombination. All rearranging loci are flanked by conserved heptamer-nonamer recombination signal sequences. Gene rearrangement results in the imprecise fusion of coding sequences and the(More)
E12 and E47 are two helix-loop-helix transcription factors that arise by alternative splicing of the E2A gene. Both have been implicated in the regulation of immunoglobulin gene expression. We have now generated E2A (-/-) mice by gene targeting. E2A-null mutant mice fail to generate mature B cells. The arrest of B cell development occurs at an early stage,(More)
Previous in vitro studies defined the minimal regions of RAG1 and RAG2 essential for V(D)J recombination. In order to characterize the role of the C-terminal "dispensable" portion of RAG2, we generated core-RAG2 knock-in mice. We found that the core-RAG2-containing recombinase complex is selectively defective in catalyzing V-to-DJ rearrangement at the IgH(More)
We have examined the regulatory role of the individual components of the immunoglobulin antigen receptor in B-cell development by transgenic complementation of Rag-1 deficient (Rag-1-) mice. Complementation with a membrane mu heavy chain (mu HC) gene allows progression of developmentally arrested Rag-1- pro-B-cells to the small pre-B cell stage, whereas the(More)
Compaction and looping of the ~2.5-Mb Igh locus during V(D)J rearrangement is essential to allow all V(H) genes to be brought in proximity with D(H)-J(H) segments to create a diverse antibody repertoire, but the proteins directly responsible for this are unknown. Because CCCTC-binding factor (CTCF) has been demonstrated to be involved in long-range(More)
Virus-transformed pre-B cells undergo ordered immunoglobulin (Ig) gene rearrangements during culture. We devised a series of highly sensitive polymerase chain reaction assays for Ig gene rearrangement and unrearranged Ig gene segment transcription to study both the possible relationship between these processes in cultured pre-B cells and the role played by(More)