Learn More
We cloned two hemoglobin genes from Arabidopsis thaliana. One gene, AHB1, is related in sequence to the family of nonsymbiotic hemoglobin genes previously identified in a number of plant species (class 1). The second hemoglobin gene, AHB2, represents a class of nonsymbiotic hemoglobin (class 2) related in sequence to the symbiotic hemoglobin genes of(More)
Although nonsymbiotic hemoglobins (Hbs) are found in different tissues of dicots and monocots, very little is known about hb genes in monocots and the function of Hbs in nonsymbiotic tissues. We report the cloning and analysis of two rice (Oryza sativa L.) hb genes, hb1 and hb2, that code for plant Hbs. Rice hb1 and hb2 genes contain four exons and three(More)
BACKGROUND Nonsymbiotic hemoglobins (nsHbs) form a new class of plant proteins that is distinct genetically and structurally from leghemoglobins. They are found ubiquitously in plants and are expressed in low concentrations in a variety of tissues including roots and leaves. Their function involves a biochemical response to growth under limited O(2)(More)
The ability of ferrous hemoglobins to reduce nitrite to form nitric oxide has been demonstrated for hemoglobins from animals, including myoglobin, blood cell hemoglobin, neuroglobin, and cytoglobin. In all cases, the rate constants for the bimolecular reactions with nitrite are relatively slow, with maximal values of ~5 M(-1) s(-1) at pH 7. Combined with(More)
Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full-length globins with the classical eight helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobins, the physiological functions of these plant(More)
Plant nonsymbiotic hemoglobins are hexacoordinate heme proteins found in all plants. Although expression is linked with hypoxic environmental conditions (Taylor, E. R., Nie, X. Z., Alexander, W. M., and Hill, R. D. (1994) Plant Mol. Biol. 24, 853-862), no discrete physiological function has yet been attributed to this family of proteins. The crystal(More)
We have identified a nuclear-encoded Hb from plants (GLB3) that has a central domain similar to the "truncated" Hbs of bacteria, protozoa, and algae. The three-dimensional structure of these Hbs is a 2-on-2 arrangement of alpha-helices, distinct from the 3-on-3 arrangement of the standard globin fold [Pesce, A., Couture, M., Dewilde, S., Guertin, M.,(More)
Neuroglobin is a newly discovered mammalian hemoglobin that is expressed predominately in the brain (Burmester, T., Welch, B., Reinhardt, S., and Hankeln, T. (2000) Nature 407, 520-523). Neuroglobin has less than 25% identity with other vertebrate globins and shares less than 30% identity with the annelid nerve myoglobin it most closely resembles among(More)
We have identified a new human hemoglobin that we call histoglobin because it is expressed in a wide array of tissues. Histoglobin shares less than 30% identity with the other human hemoglobins, and the gene contains an intron in an unprecedented location. Spectroscopic and kinetic experiments with recombinant human histoglobin indicate that it is a(More)
Rate constants for CO-heme binding to 35 different recombinant apomyoglobins and several other apoproteins were measured in an effort to understand the factors governing heme affinity and the velocity of the association reaction. Surprisingly, the rate constant for the binding of monomeric heme is approximately 1 x 10(8) M-1 s-1 regardless of the structure(More)