Learn More
Natural orifice transgastric endoscopic surgery promises to eliminate skin incisions and reduce postoperative pain and discomfort. Such an approach provides a distinct benefit as compared with conventional laparoscopy, in which multiple entry incisions are required for tools and camera. Endoscopy currently is the only method for performing procedures(More)
A mobile in vivo camera robot was developed to provide the ability for a single port biopsy procedure. Such a robot can be inserted into the abdominal cavity through a standard trocar. The surgeon controls the robot using visual feedback from the on-board camera. Measurements were made to identify the forces required to successfully biopsy in vivo tissue,(More)
Laparoscopy is abdominal surgery performed with long tools inserted through small incisions. The use of small incisions reduces patient trauma, but also eliminates the surgeon's ability to view and touch the surgical environment directly. These limitations generally restrict the application of laparoscopy to procedures less complex than those performed(More)
In an open surgery, identification of precise margins for curative tissue resection is performed by manual palpation. This is not the case for minimally invasive and robotic procedures, where tactile feedback is either distorted or not available. In this paper, we introduce the concept of intraoperative wireless tissue palpation. The wireless palpation(More)
In this paper, we built and tested the port camera, a novel, inexpensive, portable, and battery-powered laparoscopic tool that integrates the components of a vision system with a cannula port. This new device 1) minimizes the invasiveness of laparoscopic surgery by combining a camera port and tool port; 2) reduces the cost of laparoscopic vision systems by(More)
Long-term human space exploration will require contingencies for emergency medical procedures including some capability to perform surgery. The ability to perform minimally invasive surgery (MIS) would be an important capability. The use of small incisions reduces surgical risk, but also eliminates the ability of the surgeon to view and touch the surgical(More)
Advances in endoscopic techniques for abdominal procedures continue to reduce the invasiveness of surgery. Gaining access to the peritoneal cavity through small incisions prompted the first significant shift in general surgery. The complete elimination of external incisions through natural orifice access is potentially the next step in reducing patient(More)
The performance of surgeries through small incisions or natural orifices minimizes the invasiveness to the patient as compared to open procedures. However, the constraints on visual feedback and dexterity limit the scope of these procedures. Recent robotic technologies attempt to mitigate these constraints for flexible endoscopy and laparoscopy. Much of the(More)
Laparoscopic techniques have allowed surgeons to perform operations through small incisions. However, the benefits of laparoscopy are still limited to less complex procedures because of losses in imaging and dexterity compared to conventional surgery. This project is developing miniature robots to be placed within the abdominal cavity to assist the surgeon.(More)
Minimally invasive abdominal surgery (laparoscopy) results in superior patient outcomes compared to conventional open surgery. However, the difficulty of manipulating traditional laparoscopic tools from outside the body of the patient generally limits these benefits to patients undergoing relatively low complexity procedures. The use of tools that fit(More)