Learn More
Understanding the mechanisms underlying the morphological divergence of species is one of the central goals of evolutionary biology. Here, we analyze the genetic and molecular bases of the divergence of body pigmentation patterns between Drosophila yakuba and its sister species Drosophila santomea. We found that loss of pigmentation in D. santomea involved(More)
We have shown previously that the loss of abdominal pigmentation in D. santomea relative to its sister species D. yakuba resulted, in part, from cis-regulatory mutations at the tan locus. Matute et al. claim, based solely upon extrapolation from genetic crosses of D. santomea and D. melanogaster, a much more divergent species, that at least four X(More)
The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of(More)
MOTIVATION The completion of human and mouse genome sequences provides a valuable resource for decoding other mammalian genomes. The comparative mapping by annotation and sequence similarity (COMPASS) strategy takes advantage of the resource and has been used in several genome-mapping projects. It uses existing comparative genome maps based on conserved(More)
The origination and diversification of morphological characteristics represents a key problem in understanding the evolution of development. Morphological traits result from gene regulatory networks (GRNs) that form a web of transcription factors, which regulate multiple cis-regulatory element (CRE) sequences to control the coordinated expression of(More)
Convergent evolution provides a type of natural replication that can be exploited to understand the roles of contingency and constraint in the evolution of phenotypes and the gene networks that control their development. For sex-specific traits, convergence offers the additional opportunity for testing whether the same gene networks follow different(More)
Structural and functional constraints are known to play a major role in restricting the path of evolution of protein activities. However, constraints acting on evolving transcriptional regulatory sequences, e.g. enhancers, are largely unknown. Recently, we elucidated how a novel expression pattern of the Neprilysin-1 (Nep1) gene in the optic lobe of(More)
  • 1