Mark R. Holland

Learn More
Ultrasonic tissue characterization has shown promise for clinical diagnosis of diseased bone (e.g., osteoporosis) by establishing correlations between bone ultrasonic characteristics and the state of disease. Porous (trabecular) bone supports propagation of two compressional modes, a fast wave and a slow wave, each of which is characterized by an(More)
Previous work from our laboratory showed that the widely reported decrease in phase velocity with frequency (negative dispersion) for ultrasonic waves propagating through trabecular bone can arise from the interference of two compressional waves, each of which exhibits a positive dispersion. Previous simulations suggest that Bayesian probability theory can(More)
OBJECTIVE The purpose of this study was to determine whether resting myocardial deformation and rotation may be altered in diabetic patients with significant epicardial coronary artery disease (CAD) with normal left ventricular ejection fraction. DESIGN A prospective observational study. SETTING Diagnosis of epicardial CAD in patients with diabetes. (More)
Quantitative ultrasonic characterization of cancellous bone can be complicated by artifacts introduced by analyzing acquired data consisting of two propagating waves (a fast wave and a slow wave) as if only one wave were present. Recovering the ultrasonic properties of overlapping fast and slow waves could therefore lead to enhancement of bone quality(More)
  • 1