Learn More
Coiled bodies (CBs) are nuclear organelles whose structures appear to be highly conserved in evolution. In rapidly cycling cells, they are typically located in the nucleoplasm but are often found in contact with the nucleolus. The CBs in human cells contain a unique protein, called p80-coilin. Studies on amphibian oocyte nuclei have revealed a protein(More)
We have investigated the subcellular organization of the four human Y RNAs. These RNAs, which are transcribed by RNA polymerase III, are usually found complexed with the Ro autoantigen, a 60-kD protein. We designed 2'-OMe oligoribonucleotides that were complementary to accessible single-stranded regions of Y RNAs within Ro RNPs and used them in fluorescence(More)
Coiled bodies (CBs) are nuclear organelles whose morphological structure and molecular composition have been conserved from plants to animals. Furthermore, CBs are often found to co-localize with specific DNA loci in both mammalian somatic nuclei and amphibian oocytes. Much as rDNA sequences are called nucleolus organizers, we term these coiled(More)
BACKGROUND Coiled bodies are nuclear organelles that are highly enriched in small nuclear ribonucleoproteins (snRNPs) and certain basal transcription factors. Surprisingly, coiled bodies not only contain mature U snRNPs but also associate with specific chromosomal loci, including gene clusters that encode U snRNAs and histone messenger RNAs. The(More)
Cajal bodies (CBs) are nuclear structures involved in RNA metabolism that accumulate high concentrations of small nuclear ribonucleoproteins (snRNPs). Notably, CBs preferentially associate with specific genomic loci in interphase human cells, including several snRNA and histone gene clusters. To uncover functional elements involved in the interaction of(More)
Coiled bodies (CBs) are nuclear organelles involved in the metabolism of small nuclear RNAs (snRNAs) and histone messages. Their structural morphology and molecular composition have been conserved from plants to animals. CBs preferentially and specifically associate with genes that encode U1, U2, and U3 snRNAs as well as the cell cycle-regulated histone(More)
We have reported previously that protein kinase C (PKC) signaling can mediate a program of cell cycle withdrawal in IEC-18 nontransformed intestinal crypt cells, involving rapid disappearance of cyclin D1, increased expression of Cip/Kip cyclin-dependent kinase inhibitors, and activation of the growth suppressor function of pocket proteins. In the current(More)
The survival of motor neuron (SMN) protein is mutated in patients with spinal muscular atrophy (SMA). SMN is part of a multiprotein complex required for biogenesis of the Sm class of small nuclear ribonucleoproteins (snRNPs). Following assembly of the Sm core domain, snRNPs are transported to the nucleus via importin beta. Sm snRNPs contain a nuclear(More)
The human parvovirus adeno-associated virus (AAV) is unique in its ability to target viral integration to a specific site on chromosome 19 (ch-19). Recombinant AAV (rAAV) vectors retain the ability to integrate but have apparently lost this ability to target. In this report, we characterize the terminal-repeat-mediated integration for wild-type (wt), rAAV,(More)
The histone gene cluster on mouse chromosome 13 has been isolated and characterized. Using overlapping YAC clones containing histone genes from chromosome 13, a contig of approximately 2 Mb has been defined. It contains 45 histone genes, organized in three patches containing tightly clustered genes. An 80-kb patch (patch III) containing 12 histone genes is(More)