Learn More
The ATR (ATM and Rad3-related) kinase is essential to maintain genomic integrity. ATR is recruited to DNA lesions in part through its association with ATR-interacting protein (ATRIP), which in turn interacts with the single-stranded DNA binding protein RPA (replication protein A). In this study, a conserved checkpoint protein recruitment domain (CRD) in(More)
Modular proteins with multiple domains tethered by flexible linkers have variable global architectures. Using the eukaryotic ssDNA binding protein, Replication Protein A (RPA), we demonstrate that NMR spectroscopy is a powerful tool to characterize the remodeling of architecture in different functional states. The first direct evidence is obtained for the(More)
The majority of known proteins are too large to be comprehensively examined by solution NMR methods, primarily because they tumble too slowly in solution. Here we introduce an approach to making the NMR relaxation properties of large proteins amenable to modern solution NMR techniques. The encapsulation of a protein in a reverse micelle dissolved in a(More)
Amide hydrogen exchange has been used to examine the structural dynamics and energetics of the interaction of a peptide corresponding to the calmodulin binding domain of smooth muscle myosin light chain kinase with calcium-saturated calmodulin. Heteronuclear NMR 15N-1H correlation techniques were used to quantitate amide proton exchange rates of both(More)
The interaction of apocalmodulin (apoCaM) with a peptide (Neurop) based on the primary sequence of the calmodulin-binding domain of neuromodulin has been studied by fluorescence spectroscopy. The 1:1 complex (12 microM) formed between apoCaM and the Neurop peptide is extremely sensitive to salt and is half dissociated in less than 0.1 M KCl, suggesting that(More)
The majority of proteins are too large to be comprehensively examined by solution NMR methods, primarily because they tumble too slowly in solution. One potential approach to making the NMR relaxation properties of large proteins amenable to modern solution NMR techniques is to encapsulate them in a reverse micelle which is dissolved in a low viscosity(More)
Calmodulin binds to amphiphilic, helical peptides of a variety of amino-acid sequences. These peptides are usually positively charged, although there is spectroscopic evidence that at least one neutral peptide binds. The complex between calmodulin and one of its natural target peptides, the binding site for calmodulin on smooth muscle myosin light-chain(More)
  • 1