Learn More
H2AX phosphorylation is an early step in the response to DNA damage. It is widely accepted that ATM (ataxia telangiectasia mutated protein) phosphorylates H2AX in response to DNA double-strand breaks (DSBs). Whether DNA-dependent protein kinase (DNA-PK) plays any role in this response is unclear. Here, we show that H2AX phosphorylation after exposure to(More)
Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in(More)
To date, the only reported genetic defect identified in the developmental disorder, Seckel syndrome, is a mutation in ataxia telangiectasia and Rad3-related protein (ATR). Seckel syndrome is clinically and genetically heterogeneous and whether defects in ATR significantly contribute to Seckel syndrome is unclear. Firstly, we characterize ATR-Seckel cells(More)
DNA ligase IV functions in DNA nonhomologous end-joining and V(D)J recombination. Four patients with features including immunodeficiency and developmental and growth delay were found to have mutations in the gene encoding DNA ligase IV (LIG4). Their clinical phenotype closely resembles the DNA damage response disorder, Nijmegen breakage syndrome (NBS). Some(More)
The phosphatidyl inositol 3-kinase-like kinases (PIKKs), ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) regulate parallel damage response signalling pathways. ATM is reported to be activated by DNA double-strand breaks (DSBs), whereas ATR is recruited to single-stranded regions of DNA. Although the two pathways were considered to(More)
Seckel syndrome (OMIM 210600) is an autosomal recessive disorder characterized by intrauterine growth retardation, dwarfism, microcephaly and mental retardation. Clinically, Seckel syndrome shares features in common with disorders involving impaired DNA-damage responses, such as Nijmegen breakage syndrome (OMIM 251260) and LIG4 syndrome (OMIM 606593). We(More)
Ataxia-telangiectasia mutated and Rad3 related (ATR)-Seckel syndrome and autosomal recessive primary microcephaly (MCPH) syndrome share clinical features. RNA interference (RNAi) of MCPH1 have implicated the protein it encodes as a DNA-damage response protein that regulates the transcription of Chk1 and BRCA1, two genes involved in the response to DNA(More)
The efficient repair of DNA double-strand breaks is crucial in safeguarding the genomic integrity of organisms. Responses to double-strand breaks include complex signal-transduction, cell-cycle-checkpoint and repair pathways. Defects in these pathways lead to several human disorders with pleiotropic clinical features. Dissection of the molecular basis that(More)
Studies into disorders of extreme growth failure (for example, Seckel syndrome and Majewski osteodysplastic primordial dwarfism type II) have implicated fundamental cellular processes of DNA damage response signaling and centrosome function in the regulation of human growth. Here we report that mutations in ORC1, encoding a subunit of the origin recognition(More)
Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically(More)