Learn More
The open motion planning library (OMPL) is a new library for sampling-based motion planning, which contains implementations of many state-of-the-art planning algorithms. The library is designed in a way that it allows the user to easily solve a variety of complex motion planning problems with minimal input. OMPL facilitates the addition of new motion(More)
The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high(More)
Self-reconfigurable robots are modular robots that can autonomously change their shape and size to meet specific operational demands. Recently, there has been a great interest in using self-reconfigurable robots in applications such as reconnaissance, rescue missions, and space applications. Designing and controlling self-reconfigurable robots is a(More)
Many proteins undergo extensive conformational changes as part of their functionality. Tracing these changes is important for understanding the way these proteins function. Traditional biophysics-based conformational search methods require a large number of calculations and are hard to apply to large-scale conformational motions. In this work we investigate(More)
The definition of reaction coordinates for the characterization of a protein-folding reaction has long been a controversial issue, even for the "simple" case in which one single free-energy barrier separates the folded and unfolded ensemble. We propose a general approach to this problem to obtain a few collective coordinates by using nonlinear(More)
We present a new approach to path planning for deformable linear (one-dimensional) objects such as flexible wires. We introduce a method for efficiently computing stable configurations of a wire subject to manipulation constraints. These configurations correspond to minimal-energy curves. By restricting the planner to minimal-energy curves, the execution of(More)
This paper presents a new motion planner, Search Tree with Resolution Independent Density Estimation (STRIDE), designed for rapid exploration and path planning in high-dimensional systems (greater than 10). A Geometric Near-neighbor Access Tree (GNAT) is maintained to estimate the sampling density of the configuration space, allowing an implicit,(More)
Human episodic memory provides a seemingly unlimited storage for everyday experiences, and a retrieval system that allows us to access the experiences with partial activation of their components. The system is believed to consist of a fast, temporary storage in the hippocampus, and a slow, long-term storage within the neocortex. This paper presents a neural(More)
There is an increasing number of proteins with known structure but unknown function. Determining their function would have a significant impact on understanding diseases and designing new therapeutics. However, experimental protein function determination is expensive and very time-consuming. Computational methods can facilitate function determination by(More)
We present an algorithm that seeks to find a set of diverse, short paths through a roadmap graph. The usefulness of a such a set is illustrated in robotic motion planning and routing applications wherein a precomputed roadmap of the environment is partially invalidated by some change, for example, relocation of obstacles or reconfiguration of the robot. Our(More)