Learn More
Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely(More)
Adenosine deaminases that act on RNA (ADARs) catalyze adenosine to inosine conversion in RNA that is largely double stranded. Human ADAR2 (hADAR2) contains two double-stranded RNA binding motifs (dsRBMs), separated by a 90-amino acid linker, and these are followed by the C-terminal catalytic domain. We assayed enzymatic activity of N-terminal deletion(More)
We report the crystal structure of the catalytic domain of human ADAR2, an RNA editing enzyme, at 1.7 angstrom resolution. The structure reveals a zinc ion in the active site and suggests how the substrate adenosine is recognized. Unexpectedly, inositol hexakisphosphate (IP6) is buried within the enzyme core, contributing to the protein fold. Although there(More)
We present the design and initial implementation of Hyperion, an environment for the high-performance execution of Java programs. Hy-perion supports high performance by utilizing a Java-bytecode-to-C translator and by supporting parallel execution via the distribution of Java threads across the multiple processors of a cluster of Linux machines. The(More)
Deamination at C6 of adenosine in RNA catalyzed by the ADAR enzymes generates inosine at the corresponding position. Because inosine is decoded as guanosine during translation, this modification can lead to codon changes in messenger RNA. Hydration of 8-azanebularine across the C6-N1 double bond generates an excellent mimic of the transition state proposed(More)
Many biochemical and biophysical analyses of enzymes require quantities of protein that are difficult to obtain from expression in an endogenous system. To further complicate matters, native adenosine deaminases that act on RNA (ADARs) are expressed at very low levels, and overexpression of active protein has been unsuccessful in common bacterial systems.(More)
  • 1