Learn More
P2X receptors are a distinct family of ligand-gated ion channels activated by extracellular ATP. Each of the seven identified subunit proteins (P2X1 through P2X7) has been reported to form functional homo-oligomeric channels when expressed in heterologous systems. Functional studies of native receptors, together with patterns of subunit gene expression,(More)
P2X receptors are a family of ATP-gated ion channels thought to have intracellular N and C termini and two transmembrane segments separating a large extracellular domain. We examined the involvement of the second putative transmembrane domain (TM2) of the P2X2 subunit in ion conduction, using the substituted cysteine accessibility method (SCAM). This method(More)
P2X receptors are simple polypeptide channels that mediate fast purinergic depolarizations in both nerve and muscle. Although the depolarization results mainly from the influx of Na(+), these channels also conduct a significant Ca(2+) current that is large enough to evoke transmitter release from presynaptic neurons. We sought to determine the molecular(More)
P2X receptors are a family of ion channels gated by extracellular ATP. Each member of the family can form functional homomeric channels, but only P2X2 and P2X3 have been shown to combine to form a unique heteromeric channel. Data from in situ hybridization studies suggest that P2X1 and P2X5 may also co-assemble. In this study, we tested this hypothesis by(More)
We recently reported that a novel hetero-oligomeric P2X receptor is formed from the P2X(1) and P2X(5) isoforms when coexpressed in human embryonic kidney 293 cells (). A more complete description of the pharmacology of this novel receptor is presented here. A brief application of ATP to a voltage-clamped cell transiently expressing P2X(1/5) receptors(More)
P2X receptors are ATP-gated ion channels found in a variety of tissues and cell types. Seven different subunits (P2X(1)-P2X(7)) have been molecularly cloned and are known to form homomeric, and in some cases heteromeric, channel complexes. However, the molecular determinants leading to the assembly of subunits into P2X receptors are unknown. To address this(More)
We present the cloning of 10 N-methyl-D-aspartate (NMDA) receptor subunits from the zebrafish. These subunits fall into five subtypes, each containing two paralogous genes. Thus, we report two NMDAR1 genes (NR1.1 and NR1.2), and eight NMDAR2 genes, designated NR2A.1 and NR2A.2, NR2B.1 and NR2B.2, NR2C.1 and NR2C.2, and NR2D.1 and NR2D.2. The predicted(More)
ATP opens ionotropic P2X channels through a process that is poorly understood. We made an array of mutant rat P2X2 channels containing unique alanine substitutions in the transmembrane segments with the goal of identifying possible secondary structure and mapping gating domains in the pore. Alteration of channel function was measured as a change in ATP(More)
P2X3 receptors desensitize within 100 ms of channel activation, yet recovery from desensitization requires several minutes. The molecular basis for this slow rate of recovery is unknown. We designed experiments to test the hypothesis that this slow recovery is attributable to the high affinity (< 1 nM) of desensitized P2X3 receptors for agonist. We found(More)
P2X receptors are non-selective cation channels gated by extracellular ATP and are encoded by a family of seven subunit genes in mammals. These receptors exhibit high permeabilities to calcium and in the mammalian nervous system they have been linked to modulation of neurotransmitter release. Previously, three complementary DNAs (cDNAs) encoding members of(More)