Mark M. G. Walton

Learn More
Although the supplementary eye field (SEF) has been implicated in the control of head movements associated with gaze shifts, there is no direct evidence that SEF plays a role in the generation of head movements independent of gaze. If the SEF does, varying the duration of stimulation should selectively alter the head-movement kinematics during the(More)
The countermanding saccade task has been used in many studies to investigate the neural mechanisms that underlie the decision to execute or restrain rapid eye movements. In this task, the presentation of a saccade target is sometimes followed by the appearance of a stop cue that indicates that the subject should cancel the planned movement. Performance has(More)
When humans or monkeys are asked to make saccades to visual targets accompanied by one or more distractors, the two dimensional trajectory of the saccade will sometimes display significant curvature. Port and Wurtz used dual electrode recordings to show that this phenomenon is associated with activity at more than one site in superior colliculus (SC). The(More)
Because of limitations in the oculomotor range, many gaze shifts must be accomplished using coordinated movements of the eyes and head. Stimulation and recording data have implicated the primate superior colliculus (SC) in the control of these gaze shifts. The precise role of this structure in head movement control, however, is not known. The present study(More)
It has long been believed that the superior colliculus (SC) is involved in the production of saccades but plays no role in the generation of vergence eye movements. However, results from several recent studies suggest that it may be worthwhile to examine the role of the SC in saccade-vergence interactions. Specifically, the available literature suggests two(More)
One important behavioral role for head movements is to assist in the redirection of gaze. However, primates also frequently make head movements that do not involve changes in the line of sight. Virtually nothing is known about the neural basis of these head-only movements. In the present study, single-unit extracellular activity was recorded from the(More)
PURPOSE Infantile strabismus is characterized by persistent misalignment of the eyes. Mounting evidence suggests that the disorder is associated with abnormalities at the neural level, but few details are known. This study investigated the signals carried by abducens neurons in monkeys with experimentally induced strabismus. We wanted to know whether the(More)
PURPOSE Previous studies have shown that horizontal saccades are disconjugate in humans and monkeys with strabismus. The present study was designed to extend these results to vertical and oblique saccades. A major goal was to assess the conjugacy in terms of both amplitude and direction. METHODS Saccadic eye movements were recorded binocularly in three(More)
PURPOSE We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys(More)
PURPOSE Unilateral treatment with sustained release IGF-1 to one medial rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop as a result of changes in extraocular muscles during the critical period of development of binocularity. METHODS Sustained release IGF-1 pellets were implanted unilaterally on one medial(More)