Learn More
The activation of T cells through interaction of their T-cell receptors with antigenic peptide bound to major histocompatibility complex (MHC) on the surface of antigen presenting cells (APCs) is a crucial step in adaptive immunity. Here we use three-dimensional fluorescence microscopy to visualize individual peptide-I-E(k) class II MHC complexes labelled(More)
Productive T cell recognition of antigen-presenting cells (APCs) is normally accompanied by the formation of a cell-cell contact called the "immunological synapse." Our understanding of the steps leading up to this formation has been limited by the absence of tools for analyzing 3D surfaces and surface distributions as they change over time. Here we use a(More)
T cell selection and maturation in the thymus depends on the interactions between T cell receptors (TCRs) and different self-peptide-major histocompatibility complex (pMHC) molecules. We show that the affinity of the OT-I TCR for its endogenous positively selecting ligands, Catnb-H-2Kb and Cappa1-H-2Kb, is significantly lower than for previously reported(More)
In this issue, Xu et al. (2008) provide evidence for a new mechanism of T cell receptor regulation. Prior to activation, basic residues in the cytoplasmic domain of the signaling subunits of the T cell receptor associate with the plasma membrane such that the key signaling tyrosines are sequestered in the bilayer.
  • Qi-Jing Li, Jacqueline Chau, Peter J.R. Ebert, Giselle Sylvester, Hyeyoung Min, Gwen Liu +7 others
  • 2007
T cell sensitivity to antigen is intrinsically regulated during maturation to ensure proper development of immunity and tolerance, but how this is accomplished remains elusive. Here we show that increasing miR-181a expression in mature T cells augments the sensitivity to peptide antigens, while inhibiting miR-181a expression in the immature T cells reduces(More)
To initiate an immune response, key receptor-ligand pairs must cluster in "immune synapses" at the T cell-antigen-presenting cell (APC) interface. We visualized the accumulation of a major histocompatibility complex (MHC) class II molecule, I-E(k), at a T cell-B cell interface and found it was dependent on both antigen recognition and costimulation. This(More)
How T cells respond with extraordinary sensitivity to minute amounts of agonist peptide and major histocompatibility complex (pMHC) molecules on the surface of antigen-presenting cells bearing large numbers of endogenous pMHC molecules is not understood. Here we present evidence that CD4 affects the responsiveness of T helper cells by controlling spatial(More)
The detection and characterization of antigen-specific T cell populations is critical for understanding the development and physiology of the immune system and its responses in health and disease. We have developed and tested a method that uses arrays of peptide-MHC complexes for the rapid identification, isolation, activation, and characterization of(More)
  • Carolyn K Suzuki, Juan S Bonifacino, Augustin Y Lin, Mark M Davis, Richard D Klausner
  • 1991
Immunoglobulin heavy chain binding protein (BiP, GRP 78) coprecipitates with soluble and membrane-associated variants of the T-cell antigen receptor a chain (TCR-a) which are stably retained within the ER. Chelation of Caz+ during solubilization of cells leads to the dissociation of BiP from the TCR-a variants, which is dependent upon the availability of(More)