Mark Lindsay

Learn More
Loeys-Dietz syndrome (LDS) associates with a tissue signature for high transforming growth factor (TGF)-β signaling but is often caused by heterozygous mutations in genes encoding positive effectors of TGF-β signaling, including either subunit of the TGF-β receptor or SMAD3, thereby engendering controversy regarding the mechanism of disease. Here, we report(More)
Transforming growth factor-β (TGFβ) signaling drives aneurysm progression in multiple disorders, including Marfan syndrome (MFS), and therapies that inhibit this signaling cascade are in clinical trials. TGFβ can stimulate multiple intracellular signaling pathways, but it is unclear which of these pathways drives aortic disease and, when inhibited, which(More)
Crm1 is a member of the karyopherin family of nucleocytoplasmic transport receptors and mediates the export of proteins from the nucleus by forming a ternary complex with cargo and Ran:GTP. This complex translocates through the nuclear pores and dissociates in the cytosol. The yeast protein Yrb2p participates in this pathway and binds Crm1, but its(More)
Aortic aneurysm is common, accounting for 1-2% of all deaths in industrialized countries. Early theories of the causes of human aneurysm mostly focused on inherited or acquired defects in components of the extracellular matrix in the aorta. Although several mutations in the genes encoding extracellular matrix proteins have been recognized, more recent(More)
BACKGROUND A growing body of literature shows that when patterns of care are widely divergent, clinical outcomes suffer and, as a result, safety may be compromised. A multispecialty group at Luther Midelfort, Mayo Health System (LM, MHS) initiated efforts to reduce variance in the clinical practice patterns of providers. The pilot initiative, which entailed(More)
Stem cell biology holds great promise for a new era of cell-based therapy, sparking considerable interest among scientists, clinicians, and their patients. However, the translational arm of stem cell science is in a relatively primitive state. Although a number of clinical studies have been initiated, the early returns point to several inherent problems. In(More)
export by binding directly to the exportin, Crm1, forming a complex that has a higher affinity for RanGTP and cargo than has Crm1 alone (Englmeier et al., 2001; Lind-say et al., 2001). Crm1:RanBP3:RanGTP:cargo exports Summary from the nucleus to the cytoplasm and is disassembled by RanBP1 and the Ran GTPase activating protein, Ran-Many nuclear-targeted(More)
Many nuclear-targeted proteins are transported through the nuclear pore complex (NPC) by the importin-alpha:beta receptor. We now show that Npap60 (also called Nup50), a protein previously believed to be a structural component of the NPC, is a Ran binding protein and a cofactor for importin-alpha:beta-mediated import. Npap60 is a tri-stable switch that(More)
Elevated transforming growth factor (TGF)-β signaling has been implicated in the pathogenesis of syndromic presentations of aortic aneurysm, including Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). However, the location and character of many of the causal mutations in LDS intuitively imply diminished TGF-β signaling. Taken together, these data have(More)
Gene identification in human aortic aneurysm conditions is proceeding at a rapid pace and the integration of pathogenesis-based management strategies in clinical practice is an emerging reality. Human genetic alterations causing aneurysm involve diverse gene products including constituents of the extracellular matrix, cell surface receptors, intracellular(More)