Mark L. Weber

Learn More
Pregabalin (PGB) is a novel drug under development for the treatment of epilepsy, neuropathic pain, fibromyalgia, and generalized anxiety disorder. In this study, we investigated PGB transport in rats, mammalian cell lines, and Xenopus laevis oocytes. In contrast to gabapentin (GBP), PGB absorption in rats showed unique linear pharmacokinetics. PGB entered(More)
Pregabalin exhibits robust activity in preclinical assays indicative of potential antiepileptic, anxiolytic, and antihyperalgesic clinical efficacy. It binds with high affinity to the alpha(2)-delta subunit of voltage-gated calcium channels and is a substrate of the system L neutral amino acid transporter. A series of pregabalin analogues were prepared and(More)
We evaluated concentrations of excitatory amino acids released from slices into the superfusing solution and also evaluated extracellular field potential recordings and histological appearance of slice tissues to evaluate several sodium-channel modulating drugs as potential treatments for ischemia. The selective sodium-channel blocker tetrodotoxin (TTX, 1(More)
Effects of oxygen/glucose deprivation (OGD) on subcellular elemental composition and water content were determined in nerve cell bodies from CA1 areas of rat hippocampal slices. Electron probe x-ray microanalysis was used to measure percentage water and concentrations of Na, P, K, Cl, Mg, and Ca in cytoplasm, nucleus, and mitochondria of cells exposed to(More)
We performed experiments in vitro to observe electrophysiological events that may relate to the protective effect of decreased temperature during cerebral ischemia in vivo. Extracellular field potentials were recorded from area CA1 of rat hippocampal slices with reduced oxygen and 2.0 mM D-glucose, producing irreversible changes within c. 10 min (more(More)
Pregabalin, a synthetic branched chain γ-amino acid with anticonvulsant, anxiolytic, and analgesic activities, has been shown to bind with high affinity to the voltage-gated calcium channel α(2)δ subunit. Given the broad therapeutic utility of pregabalin, a series of experiments was undertaken to determine the potency, selectivity, and specificity of(More)
The pathophysiology of brain ischemia and reperfusion injury involves perturbation of intraneuronal ion homeostasis. To identify relevant routes of ion flux, rat hippocampal slices were perfused with selective voltage- or ligand-gated ion channel blockers during experimental oxygen-glucose deprivation and subsequent reperfusion. Electron probe X-ray(More)
Therapeutic efficacy of calcium channel blockers in stroke remains controversial, but previously used agents bind almost exclusively to L-type calcium channels. The newly-discovered N-type calcium channel is specific to neurons, and therapy involving blockade of this site has not been previously attempted. We assessed the neuroprotective effect of(More)
Inhibition of central α4β2 nAChRs by antidepressants, proposed to contribute to their clinical efficacy, was assessed for monoamine reuptake inhibitors (amitriptyline, nortriptyline, fluoxetine, sertraline, paroxetine, citalopram) by comparing projected human unbound brain drug concentrations (Cu,b) at therapeutic doses with concentrations that inhibit(More)