Mark L. Stevens

Learn More
We demonstrate 1550 nm photon-counting optical communications with a NbN-nanowire superconducting single-photon detector. Source data are encoded with a rate-1/2 forward-error correcting code and transmitted by use of 32-ary pulse-position modulation at 5 and 10 GHz slot rates. Error-free performance is obtained with -0.5 detected photon per source bit at a(More)
The sensitivity of a high-rate photon-counting optical communications link depends on the performance of the photon counter used to detect the optical signal. In this paper, we focus on ways to reduce the effect of blocking, which is loss due to time periods in which the photon counter is inactive following a preceding detection event. This blocking loss(More)
Space terminals for free-space optical communication systems are under constant pressure to reduce their size, weight, and power profiles. Ground terminals with large collection areas are costly, but provide a means to reduce the aperture-power product on a space platform required to close a given link. We present a ground terminal receiver architecture in(More)
  • 1