Learn More
BACKGROUND Matricellular proteins are extracellular matrix proteins that do not contribute directly to tissue integrity but are capable of modulating cell function. We hypothesized that the matricellular protein thrombospondin (TSP)-1, a potent inhibitor of angiogenesis and activator of transforming growth factor (TGF-beta), is induced in healing myocardial(More)
BACKGROUND Previous work from our laboratory demonstrated that interleukin (IL)-6 plays a potentially critical role in postreperfusion myocardial injury and is the major cytokine responsible for induction of intracellular adhesion molecule (ICAM)-1 on cardiac myocytes during reperfusion. Myocyte ICAM-1 induction is necessary for neutrophil-associated(More)
Experimental models of acute ischemic myocardial injury indicate that the inflammatory response after the ischemic event contributes to tissue damage. This is especially apparent with reperfusion of the ischemic tissue. In such models some therapeutic strategies designed to reduce neutrophil accumulation or function have resulted in apparently beneficial(More)
BACKGROUND Mutations that lead to disruption of cytoskeletal proteins have been recorded in patients with familial dilated cardiomyopathy. We postulated that changes in cytoskeletal and sarcolemmal proteins provide a final common pathway for dilation and contractile dysfunction in dilated cardiomyopathy. In this study, we investigated the integrity of(More)
Background. We have previously demonstrated that chemotactic factors released from the ischemic canine myocardium peak early during reperfusion and that they elicit neutrophil adherence reactions in vitro that are dependent on the CD18 glycoprotein family. In this study we investigated the hypothesis that neutrophil localization in ischemic canine(More)
We have demonstrated that cardiac fibrosis arises from the differentiation of monocyte-derived fibroblasts. We present here evidence that this process requires sequential Th1 and Th2 induction promoting analogous M1 (classically activated) and M2 (alternatively activated) macrophage polarity. Our models are: (1) mice subjected to daily repetitive ischemia(More)
BACKGROUND Changes in energy substrate metabolism are first responders to hemodynamic stress in the heart. We have previously shown that hexose-6-phosphate levels regulate mammalian target of rapamycin (mTOR) activation in response to insulin. We now tested the hypothesis that inotropic stimulation and increased afterload also regulate mTOR activation via(More)
Recent studies have shown that bone marrow-derived fibroblasts contribute significantly to the pathogenesis of renal fibrosis. However, the molecular mechanisms underlying the recruitment of bone marrow-derived fibroblasts into the kidney are incompletely understood. Bone marrow-derived fibroblasts express the chemokine receptor--CCR2. In this study, we(More)
We have developed a high-frequency, high-resolution Doppler spectrum analyzer (DSPW) and compared its performance against an adapted clinical Medasonics spectrum analyzer (MSA) and a zero-crossing interval histogram (ZCIH) used previously by us to evaluate cardiovascular physiology in mice. The aortic velocity (means +/- SE: 92.7 +/- 2.5 versus 82.2 +/- 1.8(More)