Learn More
Tracheal injury is a rare but complex problem. Primary tracheal reconstructions are commonly performed, but complications such as tension and inadequate vascular supply limit the length of surgical resection. The objective of the present study was to determine whether a hydrated, decellularized porcine tracheal extracellular matrix showed the potential to(More)
Although skeletal muscle is one of the most regenerative organs in our body, various genetic defects, alterations in extrinsic signaling, or substantial tissue damage can impair muscle function and the capacity for self-repair. The diversity and complexity of muscle disorders have attracted much interest from both cell biologists and, more recently,(More)
The field of skeletal muscle tissue engineering is currently hampered by the lack of methods to form large muscle constructs composed of dense, aligned, and mature myofibers and limited understanding of structure-function relationships in developing muscle tissues. In our previous studies, engineered muscle sheets with elliptical pores ("muscle networks")(More)
Healthy skeletal muscle has a remarkable capacity for regeneration. Even at a mature age, muscle tissue can undergo a robust rebuilding process that involves the formation of new muscle cells and extracellular matrix and the re-establishment of vascular and neural networks. Understanding and reverse-engineering components of this process is essential for(More)
Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and(More)
Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues ('myobundles') using primary myogenic cells. These biomimetic(More)
Highly functional engineered skeletal muscle constructs could serve as physiological models of muscle function and regeneration and have utility in therapeutic replacement of damaged or diseased muscle tissue. In this study, we examined the roles of different myogenic cell fractions and culturing conditions in the generation of highly functional engineered(More)
We are developing a simulator of peripheral nerve block utilizing a mixed-reality approach: the combination of a physical model, an MRI-derived virtual model, mechatronics and spatial tracking. Our design uses tangible (physical) interfaces to simulate surface anatomy, haptic feedback during needle insertion, mechatronic display of muscle twitch(More)
For over two decades, research groups have been developing methods to engineer three-dimensional skeletal muscle tissues. These tissues hold great promise for use in disease modeling and pre-clinical drug development, and have potential to serve as therapeutic grafts for functional muscle repair. Recent advances in the field have resulted in the engineering(More)
and proofing. formatted HTML, PDF, and XML versions will be made available after technical processing, editing, This PDF is the version of the article that was accepted for publication after peer review. Fully elife.elifesciences.org at Sign up for alerts Stay current on the latest in life science and biomedical research from eLife. drug testing 24 25 2(More)
  • 1