Mark J. Styles

Learn More
Enhancing the robustness of functional biomacromolecules is a critical challenge in biotechnology, which if addressed would enhance their use in pharmaceuticals, chemical processing and biostorage. Here we report a novel method, inspired by natural biomineralization processes, which provides unprecedented protection of biomacromolecules by encapsulating(More)
Metal organic frameworks (MOFs) offer the highest surface areas per gram of any known material. As such, they epitomise resource productivity in uses where specific surface area is critical, such as adsorption, storage, filtration and catalysis. However, the ability to control the position of MOFs is also crucial for their use in devices for applications(More)
Integrating metal-organic frameworks (MOFs) in microelectronics has disruptive potential because of the unique properties of these microporous crystalline materials. Suitable film deposition methods are crucial to leverage MOFs in this field. Conventional solvent-based procedures, typically adapted from powder preparation routes, are incompatible with(More)
It is demonstrated that metal-organic frameworks (MOFs) can be replicated in a biomimetic fashion from protein patterns. Bendable, fluorescent MOF patterns are formed with micrometer resolution under ambient conditions. Furthermore, this technique is used to grow MOF patterns from fingerprint residue in 30 s with high fidelity. This technique is not only(More)
This paper describes the design, construction and implementation of a relatively large controlled-atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate the in situ characterization of materials used in molten salt electrowinning cells, using high-energy X-ray scattering techniques such as synchrotron-based energy-dispersive(More)
Nanolaminates such as the M(n + 1)AX(n) (MAX) phases are a material class with ab initio derived elasticity tensors published for over 250 compounds. We have for the first time experimentally determined the full elasticity tensor of the archetype MAX phase, Ti(3)SiC(2), using polycrystalline samples and in situ neutron diffraction. The experimental elastic(More)
K. Liang, P. Falcaro, and co-workers report on page 7293 that metal-organic frameworks (MOFs) can be replicated in a biomimetic fashion from protein patterns on a surface. Bendable, fluorescent MOF patterns are formed with micrometer resolution under ambient conditions. This technique is used to grow MOF patterns from fingerprint residue in 30 s with high(More)
This paper describes the quantitative measurement, by in situ synchrotron X-ray diffraction (S-XRD) and subsequent Rietveld-based quantitative phase analysis and thickness calculations, of the evolution of the PbO2 and PbSO4 surface layers formed on a pure lead anode under simulated copper electrowinning conditions in a 1.6 M H2SO4 electrolyte at 318 K.(More)
  • 1