Learn More
Certain plant growth-promoting rhizobacteria (PGPR), in the absence of physical contact with a plant stimulate growth via volatile organic compound (VOC) emissions, through largely unknown mechanisms. To probe how PGPR VOCs trigger growth in plants, RNA transcript levels of Arabidopsis seedlings exposed to Bacillus subtilus (strain GB03) were examined using(More)
Mechanical forces between cells have a principal role in the organization of animal tissues. Adherens junctions are an important component of these tissues, connecting cells through their actin cytoskeleton and allowing the assembly of tensile structures. At least one adherens junction protein, beta-catenin, also acts as a signalling molecule, directly(More)
Prestalk cells of Dictyostelium discoideum contribute cellulose to two distinct structures, the stalk tube and the stalk cell wall, during culmination. This paper demonstrates by freeze fracture electron microscopy that two distinct types of intramembrane particle aggregates, which can be characterized as cellulose microfibril terminal complexes, occur in(More)
Aardvark (Aar) is a Dictyostelium beta-catenin homologue with both cytoskeletal and signal transduction roles during development. Here, we show that loss of aar causes a novel phenotype where multiple stalks appear during late development. Ectopic stalks are preceded by misexpression of the stalk marker ST-lacZ in the surrounding tissue. This process does(More)
The remarkable mechanical strength of cellulose reflects the arrangement of multiple β-1,4-linked glucan chains in a para-crystalline fibril. During plant cellulose biosynthesis, a multimeric cellulose synthesis complex (CSC) moves within the plane of the plasma membrane as many glucan chains are synthesized from the same end and in close proximity. Many(More)
  • 1