Mark J. Dunne

Learn More
OBJECTIVE Congenital hyperinsulinism in infancy (CHI) is characterized by unregulated insulin secretion from pancreatic β-cells; severe forms are associated with defects in ABCC8 and KCNJ11 genes encoding sulfonylurea receptor 1 (SUR1) and Kir6.2 subunits, which form ATP-sensitive K(+) (K(ATP)) channels in β-cells. Diazoxide therapy often fails in the(More)
Ion channelopathies have now been described in many well-characterized cell types including neurons, myocytes, epithelial cells, and endocrine cells. However, in only a few cases has the relationship between altered ion channel function, cell biology, and clinical disease been defined. Hyperinsulinism in infancy (HI) is a rare, potentially lethal condition(More)
INTRODUCTION Neuroglycopenia is recognized to be associated with abnormal neurodevelopmental outcomes in 26-44% of children with persistent congenital hyperinsulinism (P-CHI). The prevalence of abnormal neurodevelopment in transient CHI (T-CHI) is not known. We have aimed to investigate abnormal neurodevelopment and associated factors in T-CHI and P-CHI. (More)
BACKGROUND Human embryonic stem cells (HESC) readily differentiate into an apparently haphazard array of cell types, corresponding to all three germ layers, when their culture conditions are altered, for example by growth in suspension as aggregates known as embryoid bodies (EBs). However, this diversity of differentiation means that the efficiency of(More)
Diffuse congenital hyperinsulinism in infancy (CHI-D) arises from mutations inactivating the KATP channel; however, the phenotype is difficult to explain from electrophysiology alone. Here we studied wider abnormalities in the β-cell and other pancreatic lineages. Islets were disorganized in CHI-D compared with controls. PAX4 and ARX expression was(More)
OBJECTIVES To quantify islet cell nucleomegaly in controls and tissues obtained from patients with congenital hyperinsulinism in infancy (CHI) and to examine the association of nucleomegaly with proliferation. METHODS High-content analysis of histologic sections and serial block-face scanning electron microscopy were used to quantify nucleomegaly. (More)
OBJECTIVE Congenital hyperinsulinism (CHI) is a rare condition of hypoglycemia where therapeutic options are limited and often complicated by side-effects. Omega-3-polyunsaturated fatty acids (PUFA), which can suppress cardiac myocyte electrical activity, may also reduce ion channel activity in insulin-secreting cells. PUFA supplements in combination with(More)
Congenital Hyperinsulinism is a condition with a number of genetic causes, but for the majority of patients, the underlying aetiology is unknown. We present here a rational argument for the use of computational biology as a valuable resource for identifying new candidate genes which may cause disease and for understanding the complex mechanisms which define(More)
BACKGROUND Congenital hyperinsulinism (CHI) is a rare but severe disorder of hypoglycemia in children, often complicated by brain injury. In CHI, the long-term prevention of hypoglycemia is dependent on reliable enteral intake of glucose. However, feeding problems (FPs) often impede oral glucose delivery, thereby complicating the management of hypoglycemia.(More)
BACKGROUND Patients with Congenital Hyperinsulinism (CHI) due to mutations in K-ATP channel genes (K-ATP CHI) are increasingly treated by conservative medical therapy without pancreatic surgery. However, the natural history of medically treated K-ATP CHI has not been described; it is unclear if the severity of recessively and dominantly inherited K-ATP CHI(More)