Learn More
Various subsets of brain neurons express a hyperpolarization-activated inward current (I(h)) that has been shown to be instrumental in pacing oscillatory activity at both a single-cell and a network level. A characteristic feature of the stellate cells (SCs) of entorhinal cortex (EC) layer II, those neurons giving rise to the main component of the perforant(More)
Layers II and V of the entorhinal cortex (EC) occupy a privileged anatomical position in the temporal lobe memory system that allows them to gate the main flow of information in and out of the hippocampus, respectively. In vivo studies have shown that layer II of the EC is a robust generator of theta as well as gamma activity. Theta may also be present in(More)
Decades of research have shown that, from an early age, proficient bilinguals can speak each of their two languages separately (similar to monolinguals) or rapidly switch between them (dissimilar to monolinguals). Thus we ask, do monolingual and bilingual brains process language similarly or dissimilarly, and is this affected by the language context? Using(More)
The effects of muscarinic stimulation on the membrane potential and current of in situ rat entorhinal-cortex layer-II principal neurons were analyzed using the whole cell, patch-clamp technique. In current-clamp experiments, application of carbachol (CCh) induced a slowly developing, prolonged depolarization initially accompanied by a slight decrease or no(More)
The present study addresses the relationship between blood flow and glucose consumption in rat primary somatosensory cortex (SI) in vivo. We examined bilateral neuronal and hemodynamic changes and 2-deoxyglucose (2DG) uptake, as measured by autoradiography, in response to unilateral forepaw stimulation. In contrast to the contralateral forepaw area, where(More)
2 In entorhinal cortex layer-II neurons, muscarinic receptor activation promotes depolarization via activation of a non-specific cation current (I NCM). Under muscarinic influence, these neurons also develop changes in excitability that result in activity-dependent induction of delayed firing and bursting activity. In order to identify the membrane(More)
UNLABELLED The brain basis of bilinguals' ability to use two languages at the same time has been a hotly debated topic. On the one hand, behavioral research has suggested that bilingual dual language use involves complex and highly principled linguistic processes. On the other hand, brain-imaging research has revealed that bilingual language switching(More)
Although serotonin (5-HT) is an important neuromodulator in the superficial layers of the medial entorhinal cortex (mEC), there is some disagreement concerning its influences upon the membrane properties of neurons within this region. We performed whole cell recordings of mEC Layer II projection neurons in rat brain slices in order to characterize the(More)
In a neuroimaging study focusing on young bilinguals, we explored the brains of bilingual and monolingual babies across two age groups (younger 4-6 months, older 10-12 months), using fNIRS in a new event-related design, as babies processed linguistic phonetic (Native English, Non-Native Hindi) and non-linguistic Tone stimuli. We found that phonetic(More)
An explosion of functional Near Infrared Spectroscopy (fNIRS) studies investigating cortical activation in relation to higher cognitive processes, such as language, memory, and attention is underway worldwide involving adults, children and infants with typical and atypical cognition. The contemporary challenge of using fNIRS for cognitive neuroscience is to(More)