Mark G M Aarts

Learn More
Zinc is an essential micronutrient for all living organisms. When facing a shortage in zinc supply, plants adapt by enhancing the zinc uptake capacity. The molecular regulators controlling this adaptation are not known. We present the identification of two closely related members of the Arabidopsis thaliana basic-region leucine-zipper (bZIP) transcription(More)
Thlaspi caerulescens (Tc; 2n = 14) is a natural Zn, Cd and Ni hyperaccumulator species belonging to the Brassicaceae family. It shares 88% DNA identity in the coding regions with Arabidopsis thaliana (At) (Rigola et al. 2006). Although the physiology of heavy metal (hyper)accumulation has been intensively studied, the molecular genetics are still largely(More)
Practically all human populations are environmentally exposed to cadmium (Cd), mostly through plant-derived food. A growing body of epidemiological evidence suggests that there is no margin of safety between current Cd exposure levels and the threshold for adverse health effects and, hence, there is an urgent need to lower human Cd intake. Here we review(More)
Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop(More)
The micronutrient zinc has an essential role in physiological and metabolic processes in plants as a cofactor or structural element in 300 catalytic and noncatalytic proteins, but it is very toxic when available in elevated amounts. Plants tightly regulate their internal zinc concentrations in a process called zinc homeostasis. The exceptional zinc(More)
The Enhancer-Inhibitor (En-I), also known as Suppressor-mutator (Spm-dSpm), transposable element system of maize was modified and introduced into Arabidopsis by Agrobacterium tumefaciens transformation. A stable En/Spm transposase source under control of the CaMV 35S promoter mediated frequent transposition of I/dSpm elements. Transposition occurred(More)
When plants are subjected to high metal exposure, different plant species take different strategies in response to metal-induced stress. Largely, plants can be distinguished in four groups: metal-sensitive species, metal-resistant excluder species, metal-tolerant non-hyperaccumulator species, and metal-hypertolerant hyperaccumulator species, each having(More)
Zinc (Zn) hyperaccumulation seems to be a constitutive species-level trait in Thlaspi caerulescens. When compared under conditions of equal Zn availability, considerable variation in the degree of hyperaccumulation is observed among accessions originating from different soil types. This variation offers an excellent opportunity for further dissection of the(More)
The regulation of mineral accumulation in plants is genetically complex, with several genetic loci involved in the control of one mineral and loci affecting the accumulation of different minerals. To investigate the role of growth medium and organ type on the genetics of mineral accumulation, two existing (LerxKond, LerxAn-1) and one new (LerxEri-1)(More)
Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine(More)