Mark F. Tardiff

Learn More
Detecting and identifying weak gaseous plumes using thermal imaging data is complicated by many factors. These include variability due to atmosphere, ground and plume temperature, and background clutter. This paper presents an analysis of one formulation of the physics-based radiance model, which describes at-sensor observed radiance. The background(More)
Ensuring data quality and proper instrument functionality is a prerequisite for scientific investigation. Manual quality assurance is time-consuming and subjective. Metrics for describing liquid chromatography mass spectrometry (LC-MS) data have been developed; however, the wide variety of LC-MS instruments and configurations precludes applying a simple(More)
This paper describes a new method for predicting the detectability of thin gaseous plumes in hyperspectral images. The novelty of this method is the use of basis vectors for each of the spectral channels of a collection instrument to calculate noise-equivalent concentration-pathlengths instead of matching scene pixels to absorbance spectra of gases in a(More)
  • 1