Mark F. Tardiff

Learn More
Ensuring data quality and proper instrument functionality is a prerequisite for scientific investigation. Manual quality assurance is time-consuming and subjective. Metrics for describing liquid chromatography mass spectrometry (LC-MS) data have been developed; however, the wide variety of LC-MS instruments and configurations precludes applying a simple(More)
In its most general form, a signature is a unique or distinguishing measurement, pattern, or collection of data that identifies a phenomenon (object, action, or behavior) of interest. The discovery of signatures is an important aspect of a wide range of disciplines from basic science to national security for the rapid and efficient detection and/or(More)
As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that, with an increase in throughput, protein quantification estimation from the native measured peptides has become a(More)
A concept has been developed for a next-generation integrated countermeasure architecture to detect improvised explosive devices hidden on people or left behind in unstructured crowds. The work is part of the Standoff Technology Integration and Demonstration Program of the U.S. Department of Homeland Security's (DHS's) Science and Technology Directorate.(More)
The cyber environment has rapidly evolved from a curiosity to an essential component of the contemporary world. As the cyber environment has expanded and become more complex, so have the nature of adversaries and styles of attacks. Today, cyber incidents are an expected part of life. As a result, cybersecurity research emerged to address adversarial attacks(More)
Detecting and identifying weak gaseous plumes using thermal imaging data is complicated by many factors. These include variability due to atmosphere, ground and plume temperature, and background clutter. This paper presents an analysis of one formulation of the physics-based radiance model, which describes at-sensor observed radiance. The background(More)
Nanoparticles are potentially powerful therapeutic tools that have the capacity to target drug payloads and imaging agents. However, some nanoparticles can activate complement, a branch of the innate immune system, and cause adverse side-effects. Recently, we employed an in vitro hemolysis assay to measure the serum complement activity of perfluorocarbon(More)
Chemical and biological forensic programs rely on laboratory measurements to determine how a threat agent may have been produced. In addition to laboratory analyses, it may also be useful to identify institutions where the same threat agent has been produced by the same (or a similar) process, since the producer of the agent may have learned methods at a(More)
One aspect of describing contamination in an alluvial aquifer is estimating changes in concentrations over time. A variety of statistical methods are available for assessing trends in contaminant concentrations. We present a method that extends trend analysis to include estimating the coefficients for the exponential decay equation and calculating(More)
There are a variety of sensor systems deployed at border crossings and ports of entry throughout the world that scan for illicit nuclear material. These systems employ detection algorithms that interpret the output of the scans and determine whether additional investigation is warranted. In this work, we demonstrate an approach for comparing the performance(More)