Learn More
The identification of neural stem and progenitor cells (NPCs) by in vivo brain imaging could have important implications for diagnostic, prognostic, and therapeutic purposes. We describe a metabolic biomarker for the detection and quantification of NPCs in the human brain in vivo. We used proton nuclear magnetic resonance spectroscopy to identify and(More)
Diffusion tensor imaging (DTI) is a sensitive tool for detecting microstructural tissue damage in vivo. In this study, we investigated DTI abnormalities in individuals with relapsing remitting multiple sclerosis (RRMS) and examined the relations between imaging-based measures of white matter injury and cognitive impairment. DTI-derived metrics using(More)
OBJECTIVES We tested whether dynamic interaction between limbic regions supports a control systems model of excitatory and inhibitory components of a negative feedback loop, and whether dysregulation of those dynamics might correlate with trait differences in anxiety and their cardiac characteristics among healthy adults. EXPERIMENTAL DESIGN Sixty-five(More)
The maintenance of adequate blood flow to the brain is critical for normal brain function; cerebral blood flow, its regulation and the effect of alteration in this flow with disease have been studied extensively and are very well understood. This flow is not steady, however; the systolic increase in blood pressure over the cardiac cycle causes regular(More)
Proton magnetic resonance spectroscopy ((1)H-MRS) is capable of noninvasively detecting metabolic changes that occur in the brain tissue in vivo. Its clinical utility has been limited so far, however, by analytic methods that focus on independently evaluated metabolites and require prior knowledge about which metabolites to examine. Here, we applied(More)
PURPOSE To test whether memantine can prevent methotrexate-induced cognitive deficits in a preclinical model. EXPERIMENTAL DESIGN After noting that methotrexate exposure induces prolonged elevations of the glutamate analog homocysteic acid (HCA) within cerebrospinal fluid, we tested whether intrathecal injection of HCA would produce memory deficits(More)
We reported on a neural progenitor cell biomarker, a lipid-based metabolite enriched in these cells, which we detected using spectroscopy both in vitro and in vivo, and singular value decomposition–based signal processing. The study provided an outline of our computational methodology. Herein, we report more extensively on the method of spectrum analysis(More)
OBJECT The relationship between the waveform of intracranial pressure (ICP) and arterial blood pressure can be quantitatively characterized using a newly developed technique in systems analysis, the time-varying transfer function. This technique considers the arterial blood pressure as an input signal composed of multiple frequencies represented in the(More)
OBJECT The intracranial pulse pressure is often increased when neuropathology is present, particularly in cases of increased intracranial pressure (ICP) such as occurs in hydrocephalus. This pulse pressure is assumed to originate from arterial blood pressure oscillations entering the cranium; the fact that there is a coupling between the arterial blood(More)
OBJECT A recently developed model of communicating hydrocephalus suggests that ventricular dilation may be related to the redistribution of pulsations in the cranium from the subarachnoid spaces (SASs) into the ventricles. Based on this model, the authors have developed a method for analyzing flow pulsatility in the brain by using the ratio of aqueductal to(More)