Learn More
Damage caused by introduced species results from the high population densities and large body sizes that they attain in their new location. Escape from the effects of natural enemies is a frequent explanation given for the success of introduced species. Because some parasites can reduce host density and decrease body size, an invader that leaves parasites(More)
Introduced plant populations lose interactions with enemies, mutualists and competitors from their native ranges, and gain interactions with new species, under new abiotic conditions. From a biogeographical perspective, differences in the assemblage of interacting species, as well as in abiotic conditions, may explain the demographic success of the(More)
Parasites can have strong impacts but are thought to contribute little biomass to ecosystems. We quantified the biomass of free-living and parasitic species in three estuaries on the Pacific coast of California and Baja California. Here we show that parasites have substantial biomass in these ecosystems. We found that parasite biomass exceeded that of top(More)
Introduced species often seem to perform better than conspecifics in their native range. This is apparent in the high densities they may achieve or the larger individual sizes they attain. A prominent hypothesis explaining the success of introduced terrestrial species is that they are typically free of or are less affected by the natural enemies(More)
Plants engage in multiple, simultaneous interactions with other species; some (enemies) reduce and others (mutualists) enhance plant performance. Moreover, effects of different species may not be independent of one another; for example, enemies may compete, reducing their negative impact on a plant. The magnitudes of positive and negative effects, as well(More)
Empirical studies suggest that most exotic species have fewer parasite species in their introduced range relative to their native range. However, it is less clear how, ecologically, the loss of parasite species translates into a measurable advantage for invaders relative to native species in the new community. We compared parasitism at three levels (species(More)
A fundamental assumption in invasion biology is that most invasive species exhibit enhanced performance in their introduced range relative to their home ranges. This idea has given rise to numerous hypotheses explaining "invasion success" by virtue of altered ecological and evolutionary pressures. There are surprisingly few data, however, testing the(More)
BACKGROUND The invasion of habitats by non-indigenous species (NIS) occurs at a global scale and can generate significant ecological, evolutionary, economic and social consequences. Estuarine and coastal ecosystems are particularly vulnerable to pollution from numerous sources due to years of human-induced degradation and shipping. Pollution is considered(More)
Diaphorocleidus orthodusus n. sp. and Diaphorocleidus kabatai (Molnar, Hanek and Fernando, 1974) Jogunoori, Kritsky, and Venkatanarasaiah, 2004 are detailed from Astyanax orthodus and Astyanax aeneus, respectively. Palombitrema heteroancistrium (Price and Bussing, 1968) is described from specimens collected from A. aeneus, and Urocleidoides strombicirrus(More)
Species interactions are widely assumed to be stronger at lower latitudes, but surprisingly few experimental studies test this hypothesis, and none ties these processes to observed patterns of species richness across latitude. We report here the first experimental field test that predation is both stronger and has a disproportionate effect on species(More)